A practical approach to the implementation of selectivity in homonuclear multidimensional NMR with frequency selective‐filtering techniques. Application to the chemical structure elucidation of complex oligosaccharides †

This review describes the use of frequency‐selective filters for the design of selective NMR experiments. Frequency‐selective filters constitute ‘user‐friendly’ and efficient alternatives to selective excitation in most applications. Different selective schemes are discussed, which are based either on selective inversion or selective refocusing of the frequencies of interest. Selective filters can be used to transform 2D (or 3D) experiments into 1D (or 2D) analogues, or to restrict the matrix size in higher dimensional spectra. Accurate NMR parameters can be easily extracted from such spectra in short measuring times, with high digital resolution and minimum data storage. For these reasons, these experiments are a very useful alternative to conventional multidimensional experiments in structural and/or conformational studies of small‐ and medium‐sized molecules. Moreover, using DANTE procedures for selectivity, they can be easily implemented on ‘routine’ spectrometers, without the need for sophisticated hardware. These methods have been tested on a complex heterosidic compound, where they prove to afford outstanding interest in achieving proton resonance assignment and chemical structure delineation. Copyright © 1999 John Wiley & Sons, Ltd.

[1]  C. Delay,et al.  Isolation and structure elucidation of a highly haemolytic saponin from the Merck saponin extract using high-field gradient-enhanced NMR techniques. , 1997, Carbohydrate research.

[2]  D. Uhrín Chapter 3 Concatenation of polarization transfer steps in 1D homonuclear chemical shift correlated experiments. Application to oligo- and polysaccharides , 1997 .

[3]  C. Roumestand,et al.  Gradient‐Enhanced Band‐Filtering Experiments , 1996 .

[4]  T. Parella High‐Quality 1D Spectra by Implementing Pulsed‐Field Gradients as the Coherence Pathway Selection Procedure , 1996 .

[5]  C. Roumestand,et al.  Synthesis and solution structure of the antimicrobial peptide protegrin-1. , 1996, European journal of biochemistry.

[6]  C. Roumestand,et al.  The Use of Band Filtering in Multidimensional NMR. Evaluation of Two "User-Friendly" Techniques , 1995 .

[7]  C. Roumestand,et al.  Analytical expressions for the DANTE pulse sequence , 1995 .

[8]  C. Dalvit Semi‐selective two‐dimensional homonuclear and heteronuclear NMR experiments recorded with pulsed field gradients , 1995 .

[9]  A. J. Shaka,et al.  Excitation Sculpting in High-Resolution Nuclear Magnetic Resonance Spectroscopy: Application to Selective NOE Experiments , 1995 .

[10]  C. Dalvit New One-Dimensional Selective NMR Experiments in Aqueous Solutions Recorded with Pulsed Field Gradients , 1995 .

[11]  A. J. Shaka,et al.  Water Suppression That Works. Excitation Sculpting Using Arbitrary Wave-Forms and Pulsed-Field Gradients , 1995 .

[12]  C. Dalvit,et al.  Pulsed field gradient one‐dimensional NMR selective ROE and TOCSY experiments , 1995 .

[13]  C. Roumestand,et al.  Suppression of Unwanted Sideband Excitations in the DANTE-Z Experiment , 1995 .

[14]  R. Freeman,et al.  Band-selective correlation spectroscopy , 1995 .

[15]  A. J. Shaka,et al.  Ultrahigh-Quality NOE Spectra , 1994 .

[16]  C. Roumestand,et al.  DANTE-Z, an alternative to low-power soft pulses. Improvement of the selection scheme and applications to multidimensional NMR studies of proteins , 1994 .

[17]  R. Freeman,et al.  Long‐range carbon–proton couplings in strychnine , 1994 .

[18]  F. Toma,et al.  Improvements of the DANTE-Z sequence for band-selective excitation: application to multidimensional NMR spectroscopy - SOUS-TITRE , 1994 .

[19]  A. J. Shaka,et al.  A Simple Windowless Mixing Sequence to Suppress Cross Relaxation in TOCSY Experiments , 1993 .

[20]  P. Hajduk,et al.  Theoretical Analysis of Relaxation During Shaped Pulses. I. The Effects of Short T1 and T2 , 1993 .

[21]  H. Desvaux,et al.  Simple solutions to resolve extreme NMR spectral overcrowding using shaped pulses , 1993 .

[22]  R. Freeman,et al.  Multiple Hartmann-Hahn coherence transfer in nuclear magnetic resonance spectroscopy , 1992 .

[23]  V. Saudek,et al.  Gradient-tailored excitation for single-quantum NMR spectroscopy of aqueous solutions , 1992, Journal of biomolecular NMR.

[24]  R. Freeman,et al.  User-friendly selective pulses , 1992 .

[25]  R. Freeman,et al.  Selective Excitation in High-Resolution NMR , 1991 .

[26]  Ray Freeman,et al.  Band-selective radiofrequency pulses , 1991 .

[27]  H. Kessler,et al.  Multi‐dimensional NMR experiments using selective pulses , 1991 .

[28]  J. Nuzillard,et al.  Two-dimensional extensions of 1D HOHAHA experiments , 1991 .

[29]  B. Perly,et al.  High-accuracy measurement of proton chemical shifts and coupling constants in substituted cyclic oligosaccharides using phase-sensitive two-dimensional soft experiments , 1991 .

[30]  S. Homans Simplification of COSY spectra of oligosaccharides by application of a 2D analog of 3D HOHAHA-COSY , 1990 .

[31]  C. Roumestand,et al.  Pseudo-3D NMR of proteins with selective excitation by DANTE-Z. One-dimensional TOCSY-NOESY experiment , 1990 .

[32]  R. Freeman,et al.  Separation of overlapping cross peaks in NMR correlation spectroscopy , 1990 .

[33]  Ad Bax,et al.  Rapid recording of 2D NMR spectra without phase cycling. Application to the study of hydrogen exchange in proteins , 1989 .

[34]  A. J. Shaka,et al.  Broadband homonuclear cross polarization in 2D N.M.R. using DIPSI-2 , 1989 .

[35]  R. R. Ernst,et al.  Three-dimensional Fourier spectroscopy. Application to high-resolution NMR , 1989 .

[36]  Ad Bax,et al.  Practical aspects of 3D heteronuclear NMR of proteins , 1989 .

[37]  R. Freeman,et al.  A new kind of selective excitation sequence , 1989 .

[38]  D. Canet,et al.  DANTE-Z. A new approach for accurate frequency selectivity using hard pulses , 1989 .

[39]  G. Bodenhausen,et al.  Self-refocusing effect of 270° Gaussian pulses. Applications to selective two-dimensional exchange spectroscopy , 1989 .

[40]  R. Brüschweiler,et al.  Combined use of hard and soft pulses for ω1 decoupling in two-dimensional NMR spectroscopy , 1988 .

[41]  L. Hall,et al.  A chemical-shift-selective filter , 1988 .

[42]  Ray Freeman,et al.  Shaped selective pulses for coherence-transfer experiments , 1987 .

[43]  D. Canet,et al.  A one‐dimensional selective version of the INADEQUATE experiment for determining carbon—carbon connectivities. Analysis of multi‐pulse experiments by a vectorial representation , 1987 .

[44]  R. Brüschweiler,et al.  Two-dimensional NMR spectroscopy with soft pulses , 1987 .

[45]  A. Bax,et al.  Generation of Pure Phase NMR Subspectra for Measurement of Homonuclear Coupling Constants , 1987 .

[46]  C. Griesinger,et al.  Transformation of homonuclear two-dimensional NMR techniques into one-dimensional techniques using Gaussian pulses , 1986 .

[47]  E. Guittet,et al.  Selective heteronuclear chemical shift correlation without soft pulses , 1985 .

[48]  R. Freeman,et al.  Decomposition of proton NMR spectra into individual spin multiplets , 1985 .

[49]  R. R. Ernst,et al.  z Filters for purging phase- or multiplet-distorted spectra , 1984 .

[50]  A. J. Shaka,et al.  Evaluation of a new broadband decoupling sequence: WALTZ-16 , 1983 .

[51]  R. Kaptein,et al.  Multiplet selection using multiple quantum coherence , 1983 .

[52]  R. Kaptein,et al.  H-1-NMR ASSIGNMENTS AND CONNECTIVITIES OF CYTOSINES IN LAC OPERATOR DNA VIA DOUBLE QUANTUM COHERENCE , 1982 .

[53]  R. Kaptein,et al.  Multiplet selection in crowded 1H NMR spectra via double quantum coherence , 1982 .

[54]  Geoffrey Bodenhausen,et al.  Suppression of artifacts in two-dimensional J spectroscopy , 1977 .

[55]  D. I. Hoult,et al.  Critical factors in the design of sensitive high resolution nuclear magnetic resonance spectrometers , 1975, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.