Preventing Small $\mathbf {(s, t)}$-Cuts by Protecting Edges

We introduce and study WEIGHTED MIN (s, t)-CUT PREVENTION, where we are given a graph G = (V,E) with vertices s and t and an edge cost function and the aim is to choose an edge set D of total cost at most d such that G has no (s, t)-edge cut of capacity at most a that is disjoint from D. We show that WEIGHTED MIN (s, t)-CUT PREVENTION is NP-hard even on subcubcic graphs when all edges have capacity and cost one and provide a comprehensive study of the parameterized complexity of the problem. We show, for example W[1]-hardness with respect to d and an FPT algorithm for a.

[1]  R. Kevin Wood,et al.  Shortest‐path network interdiction , 2002, Networks.

[2]  Michael R. Fellows,et al.  On problems without polynomial kernels , 2009, J. Comput. Syst. Sci..

[3]  Hans L. Bodlaender A linear time algorithm for finding tree-decompositions of small treewidth , 1993, STOC '93.

[4]  Hans L. Bodlaender,et al.  A linear time algorithm for finding tree-decompositions of small treewidth , 1993, STOC.

[5]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[6]  Jiong Guo,et al.  Parameterized Complexity of Edge Interdiction Problems , 2014, COCOON.

[7]  Stefan Kratsch,et al.  Kernelization Lower Bounds by Cross-Composition , 2012, SIAM J. Discret. Math..

[8]  David P. Morton,et al.  Stochastic Network Interdiction , 1998, Oper. Res..

[9]  Gregory Gutin,et al.  Parameterized complexity of the k-arc Chinese Postman Problem , 2017, J. Comput. Syst. Sci..

[10]  Rolf Niedermeier,et al.  A more fine‐grained complexity analysis of finding the most vital edges for undirected shortest paths , 2018, Networks.

[11]  Michael R. Fellows,et al.  Fundamentals of Parameterized Complexity , 2013 .

[12]  Michal Pilipczuk,et al.  Parameterized Algorithms , 2015, Springer International Publishing.

[13]  Stefan Kratsch,et al.  Polynomial kernels for weighted problems , 2015, J. Comput. Syst. Sci..

[14]  Gregory Gutin,et al.  Parameterized complexity of the k-arc Chinese Postman Problem , 2014, J. Comput. Syst. Sci..

[15]  Rico Zenklusen,et al.  Matching interdiction , 2008, Discret. Appl. Math..

[16]  R. Kevin Wood,et al.  Deterministic network interdiction , 1993 .

[17]  Ge Xia,et al.  Improved upper bounds for vertex cover , 2010, Theor. Comput. Sci..

[18]  Joseph Geunes,et al.  Modern network interdiction problems and algorithms , 2013 .

[19]  Klaus Jansen,et al.  Bin packing with fixed number of bins revisited , 2013, J. Comput. Syst. Sci..

[20]  Barry O'Sullivan,et al.  Finding small separators in linear time via treewidth reduction , 2011, TALG.

[21]  Thomas Erlebach,et al.  Length-bounded cuts and flows , 2006, TALG.

[22]  Ton Kloks Treewidth, Computations and Approximations , 1994, Lecture Notes in Computer Science.

[23]  Rolf Niedermeier,et al.  Fractals for Kernelization Lower Bounds , 2015, SIAM J. Discret. Math..

[24]  Javad Tayyebi,et al.  Minimum st-cut interdiction problem , 2020, Comput. Ind. Eng..

[25]  Rico Zenklusen,et al.  Hardness and approximation for network flow interdiction , 2015, Networks.