TacWhiskers: Biomimetic Optical Tactile Whiskered Robots

Here we propose and investigate a novel vibrissal tactile sensor - the Tac Whisker array - based on modifying a 3D-printed optical cutaneous (fingertip) tactile sensor - the TacTip. Two versions are considered: a static Tac Whisker array analogous to immotile tactile vibrissae (e.g. rodent microvib-rissae) and a dynamic Tac Whisker array analogous to motile tactile vibrissae (e.g. rodent macrovibrissae). Performance is assessed on an active object localization task. The whisking motion of the dynamic Tac Whisker leads to millimetre-scale location perception, whereas perception with the static Tac Whisker array is relatively poor when making dabbing contacts. The dynamic sensor output is dominated by a self-generated motion signal, which can be compensated by comparing to a reference signal. Overall, the Tac Whisker arrays give a new class of tactile whiskered robots that benefit from being relatively inexpensive and customizable. Furthermore, the biomimetic basis for the Tac Whiskers fits well with building an embodied model of the rodent sensory system for investigating animal perception.

[1]  Jonathan Rossiter,et al.  The TacTip Family: Soft Optical Tactile Sensors with 3D-Printed Biomimetic Morphologies , 2018, Soft robotics.

[2]  Nathan F. Lepora,et al.  Superresolution with an optical tactile sensor , 2015, 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[3]  Takahiro Furuta,et al.  Vibrissal mechanoreceptors , 2017, Scholarpedia.

[4]  Sean R. Anderson,et al.  Visual-tactile sensory map calibration of a biomimetic whiskered robot , 2016, 2016 IEEE International Conference on Robotics and Automation (ICRA).

[5]  Anthony G. Pipe,et al.  Whisking with robots , 2009, IEEE Robotics & Automation Magazine.

[6]  T. Prescott,et al.  Biomimetic vibrissal sensing for robots , 2011, Philosophical Transactions of the Royal Society B: Biological Sciences.

[7]  Nathan F. Lepora,et al.  Brain-inspired Bayesian perception for biomimetic robot touch , 2012, 2012 IEEE International Conference on Robotics and Automation.

[8]  Sean R. Anderson,et al.  Adaptive Cancelation of Self-Generated Sensory Signals in a Whisking Robot , 2010, IEEE Transactions on Robotics.

[9]  Hannah Emnett,et al.  A Novel Whisker Sensor Used for 3D Contact Point Determination and Contour Extraction , 2018, Robotics: Science and Systems.

[10]  Nathan F. Lepora,et al.  Addition of a Biomimetic Fingerprint on an Artificial Fingertip Enhances Tactile Spatial Acuity , 2017, IEEE Robotics and Automation Letters.

[11]  DaeEun Kim,et al.  Biomimetic whiskers for shape recognition , 2007, Robotics Auton. Syst..

[12]  Anthony G. Pipe,et al.  Whiskerbot: A Robotic Active Touch System Modeled on the Rat Whisker Sensory System , 2007, Adapt. Behav..

[13]  Tony J. Prescott,et al.  Vibrissal behavior and function , 2011, Scholarpedia.

[14]  Jonathan Rossiter,et al.  Development of a tactile sensor based on biologically inspired edge encoding , 2009, 2009 International Conference on Advanced Robotics.

[15]  V. Hafner,et al.  The Artificial Mouse - A Robot with Whiskers and Vision , 2004 .

[16]  Mathew H. Evans,et al.  Tactile Discrimination Using Active Whisker Sensors , 2012, IEEE Sensors Journal.

[17]  A. Ahl The role of vibrissae in behavior: A status review , 1986, Veterinary Research Communications.

[18]  D. Kleinfeld,et al.  'Where' and 'what' in the whisker sensorimotor system , 2008, Nature Reviews Neuroscience.

[19]  Anthony G. Pipe,et al.  SCRATCHbot: Active Tactile Sensing in a Whiskered Mobile Robot , 2010, SAB.

[20]  Nathan F. Lepora,et al.  Biomimetic Active Touch with Fingertips and Whiskers , 2016, IEEE Transactions on Haptics.