A new class of central compact schemes with spectral-like resolution II: Hybrid weighted nonlinear schemes

In this paper, we develop a class of nonlinear compact schemes based on our previous linear central compact schemes with spectral-like resolution (X. Liu et al., 2013 20). In our approach, we compute the flux derivatives on the cell-nodes by the physical fluxes on the cell nodes and numerical fluxes on the cell centers. To acquire the numerical fluxes on the cell centers, we perform a weighted hybrid interpolation of an upwind interpolation and a central interpolation. Through systematic analysis and numerical tests, we show that our nonlinear compact scheme has high order, high resolution and low dissipation, and has the same ability to capture strong discontinuities as regular weighted essentially non-oscillatory (WENO) schemes. It is a good choice for the simulation of multiscale problems with shock waves.

[1]  Krishnan Mahesh,et al.  High order finite difference schemes with good spectral resolution , 1997 .

[2]  P. Woodward,et al.  The numerical simulation of two-dimensional fluid flow with strong shocks , 1984 .

[3]  Chi-Wang Shu,et al.  A new class of central compact schemes with spectral-like resolution I: Linear schemes , 2013, J. Comput. Phys..

[4]  Chi-Wang Shu,et al.  High Order Weighted Essentially Nonoscillatory Schemes for Convection Dominated Problems , 2009, SIAM Rev..

[5]  S. Osher,et al.  Weighted essentially non-oscillatory schemes , 1994 .

[6]  C. Tam,et al.  Dispersion-relation-preserving finite difference schemes for computational acoustics , 1993 .

[7]  J. M. Powers,et al.  Mapped weighted essentially non-oscillatory schemes: Achieving optimal order near critical points , 2005 .

[8]  Li Jiang,et al.  Weighted Compact Scheme for Shock Capturing , 2001 .

[9]  Xiaolin Zhong,et al.  Derivation of high-order compact finite difference schemes for non-uniform grid using polynomial interpolation , 2005 .

[10]  Yuxin Ren,et al.  A characteristic-wise hybrid compact-WENO scheme for solving hyperbolic conservation laws , 2003 .

[11]  Centro internazionale matematico estivo. Session,et al.  Advanced Numerical Approximation of Nonlinear Hyperbolic Equations , 1998 .

[12]  Roberto Ferretti,et al.  A Weighted Essentially Nonoscillatory, Large Time-Step Scheme for Hamilton-Jacobi Equations , 2005, SIAM J. Sci. Comput..

[13]  Xiaogang Deng,et al.  Developing high-order weighted compact nonlinear schemes , 2000 .

[14]  G. Sod A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws , 1978 .

[15]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[16]  Chi-Wang Shu,et al.  Efficient Implementation of Weighted ENO Schemes , 1995 .

[17]  Sergio Pirozzoli,et al.  Conservative Hybrid Compact-WENO Schemes for Shock-Turbulence Interaction , 2002 .

[18]  Nail K. Yamaleev,et al.  A systematic methodology for constructing high-order energy stable WENO schemes , 2009, J. Comput. Phys..

[19]  Chi-Wang Shu,et al.  Monotonicity Preserving Weighted Essentially Non-oscillatory Schemes with Increasingly High Order of Accuracy , 2000 .

[20]  Parviz Moin,et al.  Assessment of high-resolution methods for numerical simulations of compressible turbulence with shock waves , 2010, J. Comput. Phys..

[21]  S. Osher,et al.  Uniformly high order accuracy essentially non-oscillatory schemes III , 1987 .

[22]  S. Lele Compact finite difference schemes with spectral-like resolution , 1992 .

[23]  Zhi J. Wang,et al.  Optimized weighted essentially nonoscillatory schemes for linear waves with discontinuity: 381 , 2001 .

[24]  Chi-Wang Shu,et al.  Development of nonlinear weighted compact schemes with increasingly higher order accuracy , 2008, J. Comput. Phys..

[25]  B. J. Boersma,et al.  A staggered compact finite difference formulation for the compressible Navier-Stokes equations , 2005 .

[26]  Prabhu Ramachandran,et al.  Approximate Riemann solvers for the Godunov SPH (GSPH) , 2014, J. Comput. Phys..

[27]  Chi-Wang Shu,et al.  Multidomain WENO Finite Difference Method with Interpolation at Subdomain Interfaces , 2003, J. Sci. Comput..

[28]  Joel H. Ferziger,et al.  A robust high-order compact method for large eddy simulation , 2003 .

[29]  Wai-Sun Don,et al.  An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws , 2008, J. Comput. Phys..

[30]  Yong-Tao Zhang,et al.  Resolution of high order WENO schemes for complicated flow structures , 2003 .

[31]  Philip L. Roe,et al.  On Postshock Oscillations Due to Shock Capturing Schemes in Unsteady Flows , 1997 .

[32]  P. Lax Weak solutions of nonlinear hyperbolic equations and their numerical computation , 1954 .

[33]  Sergio Pirozzoli,et al.  Numerical Methods for High-Speed Flows , 2011 .

[34]  Sergio Pirozzoli,et al.  Development of optimized weighted‐ENO schemes for multiscale compressible flows , 2003 .

[35]  S. Osher,et al.  Efficient implementation of essentially non-oscillatory shock-capturing schemes,II , 1989 .

[36]  S. Osher,et al.  Uniformly high order accurate essentially non-oscillatory schemes, 111 , 1987 .

[37]  Nikolaus A. Adams,et al.  An adaptive central-upwind weighted essentially non-oscillatory scheme , 2010, J. Comput. Phys..

[38]  V. Gregory Weirs,et al.  A bandwidth-optimized WENO scheme for the effective direct numerical simulation of compressible turbulence , 2006, J. Comput. Phys..

[39]  Max L. Warshauer,et al.  Lecture Notes in Mathematics , 2001 .

[40]  Sergio Pirozzoli,et al.  On the spectral properties of shock-capturing schemes , 2006, J. Comput. Phys..

[41]  I. Bohachevsky,et al.  Finite difference method for numerical computation of discontinuous solutions of the equations of fluid dynamics , 1959 .

[42]  Nail K. Yamaleev,et al.  Third-Order Energy Stable WENO Scheme , 2008 .

[43]  Chi-Wang Shu,et al.  Total variation diminishing Runge-Kutta schemes , 1998, Math. Comput..

[44]  P. Roe Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes , 1997 .

[45]  Bernardo Cockburn,et al.  Nonlinearly stable compact schemes for shock calculations , 1994 .

[46]  Chi-Wang Shu Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws , 1998 .

[47]  Nikolaus A. Adams,et al.  A High-Resolution Hybrid Compact-ENO Scheme for Shock-Turbulence Interaction Problems , 1996 .

[48]  R. LeVeque Approximate Riemann Solvers , 1992 .

[49]  Miguel R. Visbal,et al.  On the use of higher-order finite-difference schemes on curvilinear and deforming meshes , 2002 .