Extremal distributions under approximate majorization

Although an input distribution may not majorize a target distribution, it may majorize a distribution which is close to the target. Here we consider a notion of approximate majorization. For any distribution, and given a distance ?, we find the approximate distributions which majorize (are majorized by) all other distributions within the distance ?. We call these the steepest and flattest approximation. This enables one to compute how close one can get to a given target distribution under a process governed by majorization. We show that the flattest and steepest approximations preserve ordering under majorization. Furthermore, we give a notion of majorization distance. This has applications ranging from thermodynamics, entanglement theory, and economics.

[1]  I. Olkin,et al.  Inequalities: Theory of Majorization and Its Applications , 1980 .

[2]  Michal Horodecki,et al.  The second laws of quantum thermodynamics , 2013, Proceedings of the National Academy of Sciences.

[3]  M. Horodecki,et al.  Fundamental limitations for quantum and nanoscale thermodynamics , 2011, Nature Communications.

[4]  Nicole Yunger Halpern,et al.  The resource theory of informational nonequilibrium in thermodynamics , 2013, 1309.6586.

[5]  R. Renner,et al.  The minimal work cost of information processing , 2012, Nature Communications.

[6]  Gilad Gour,et al.  Quantum relative Lorenz curves , 2016, 1607.05735.

[7]  Charles H. Bennett,et al.  Mixed-state entanglement and quantum error correction. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[8]  R. Jackson Inequalities , 2007, Algebra for Parents.

[9]  S. Friedland,et al.  Universal uncertainty relations. , 2013, Physical review letters.

[10]  T. Seligman,et al.  The mixing distance , 1978 .

[11]  M. Horodecki,et al.  Reversible transformations from pure to mixed states and the unique measure of information , 2002, quant-ph/0212019.

[12]  Joseph M. Renes,et al.  Relative submajorization and its use in quantum resource theories , 2015, 1510.03695.

[13]  Huangjun Zhu,et al.  Operational one-to-one mapping between coherence and entanglement measures , 2017, 1704.01935.

[14]  Stephanie Wehner,et al.  Smoothed generalized free energies for thermodynamics , 2017, 1706.03193.

[15]  Michael A. Nielsen,et al.  Majorization and the interconversion of bipartite states , 2001, Quantum Inf. Comput..

[16]  E. Torgersen Comparison of experiments when the parameter space is finite , 1970 .

[17]  L. Schmetterer Zeitschrift fur Wahrscheinlichkeitstheorie und Verwandte Gebiete. , 1963 .

[18]  Eric P. Hanson,et al.  Maximum and minimum entropy states yielding local continuity bounds , 2017, 1706.02212.

[19]  Jonathan Oppenheim,et al.  N ov 2 01 1 Fundamental limitations for quantum and nano thermodynamics , 2011 .

[20]  Jonathan Oppenheim,et al.  Fluctuating States: What is the Probability of a Thermodynamical Transition? , 2015, 1504.00020.

[21]  Lukasz Rudnicki,et al.  Majorization entropic uncertainty relations , 2013, ArXiv.

[22]  R. van der Meer The properties of thermodynamical operations , 2016 .

[23]  J. Åberg Catalytic coherence. , 2013, Physical review letters.

[24]  J. Eichel Comparison Of Statistical Experiments , 2016 .

[25]  Ingram Olkin,et al.  Inequalities: Theory of Majorization and Its Application , 1979 .

[26]  E. Ruch,et al.  The principle of increasing mixing character and some of its consequences , 1976 .