BLiMP: A Benchmark of Linguistic Minimal Pairs for English

Abstract We introduce The Benchmark of Linguistic Minimal Pairs (BLiMP),1 a challenge set for evaluating the linguistic knowledge of language models (LMs) on major grammatical phenomena in English. BLiMP consists of 67 individual datasets, each containing 1,000 minimal pairs—that is, pairs of minimally different sentences that contrast in grammatical acceptability and isolate specific phenomenon in syntax, morphology, or semantics. We generate the data according to linguist-crafted grammar templates, and human aggregate agreement with the labels is 96.4%. We evaluate n-gram, LSTM, and Transformer (GPT-2 and Transformer-XL) LMs by observing whether they assign a higher probability to the acceptable sentence in each minimal pair. We find that state-of-the-art models identify morphological contrasts related to agreement reliably, but they struggle with some subtle semantic and syntactic phenomena, such as negative polarity items and extraction islands.

[1]  Samuel R. Bowman,et al.  jiant: A Software Toolkit for Research on General-Purpose Text Understanding Models , 2020, ACL.

[2]  Colin Raffel,et al.  Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer , 2019, J. Mach. Learn. Res..

[3]  Rui P. Chaves,et al.  What Don’t RNN Language Models Learn About Filler-Gap Dependencies? , 2020, SCIL.

[4]  Rui P. Chaves,et al.  Assessing the ability of Transformer-based Neural Models to represent structurally unbounded dependencies , 2020, SCIL.

[5]  Shikha Bordia,et al.  Investigating BERT’s Knowledge of Language: Five Analysis Methods with NPIs , 2019, EMNLP.

[6]  Peng Qian,et al.  Representation of Constituents in Neural Language Models: Coordination Phrase as a Case Study , 2019, EMNLP.

[7]  S. A. Chowdhury,et al.  An LSTM Adaptation Study of (Un)grammaticality , 2019, BlackboxNLP@ACL.

[8]  Alex Wang,et al.  What do you learn from context? Probing for sentence structure in contextualized word representations , 2019, ICLR.

[9]  Omer Levy,et al.  SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems , 2019, NeurIPS.

[10]  Roger Levy,et al.  Structural Supervision Improves Learning of Non-Local Grammatical Dependencies , 2019, NAACL.

[11]  Samuel R. Bowman,et al.  Linguistic Analysis of Pretrained Sentence Encoders with Acceptability Judgments , 2019 .

[12]  Samuel R. Bowman,et al.  Grammatical Analysis of Pretrained Sentence Encoders with Acceptability Judgments , 2019, ArXiv.

[13]  Yiming Yang,et al.  Transformer-XL: Attentive Language Models beyond a Fixed-Length Context , 2019, ACL.

[14]  Samuel R. Bowman,et al.  Neural Network Acceptability Judgments , 2018, Transactions of the Association for Computational Linguistics.

[15]  Ilya Sutskever,et al.  Language Models are Unsupervised Multitask Learners , 2019 .

[16]  Ming-Wei Chang,et al.  BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding , 2019, NAACL.

[17]  Samuel R. Bowman,et al.  Verb Argument Structure Alternations in Word and Sentence Embeddings , 2018, ArXiv.

[18]  Roger Levy,et al.  RNNs as psycholinguistic subjects: Syntactic state and grammatical dependency , 2018, ArXiv.

[19]  Roger Levy,et al.  What do RNN Language Models Learn about Filler–Gap Dependencies? , 2018, BlackboxNLP@EMNLP.

[20]  Dieuwke Hupkes,et al.  Do Language Models Understand Anything? On the Ability of LSTMs to Understand Negative Polarity Items , 2018, BlackboxNLP@EMNLP.

[21]  Tal Linzen,et al.  Targeted Syntactic Evaluation of Language Models , 2018, EMNLP.

[22]  Jon Sprouse,et al.  Investigating variation in island effects , 2017, Natural Language & Linguistic Theory.

[23]  S. A. Chowdhury,et al.  RNN Simulations of Grammaticality Judgments on Long-distance Dependencies , 2018, COLING.

[24]  Allyson Ettinger,et al.  Assessing Composition in Sentence Vector Representations , 2018, COLING.

[25]  Guillaume Lample,et al.  What you can cram into a single $&!#* vector: Probing sentence embeddings for linguistic properties , 2018, ACL.

[26]  Omer Levy,et al.  GLUE: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding , 2018, BlackboxNLP@EMNLP.

[27]  Edouard Grave,et al.  Colorless Green Recurrent Networks Dream Hierarchically , 2018, NAACL.

[28]  Luke S. Zettlemoyer,et al.  Deep Contextualized Word Representations , 2018, NAACL.

[29]  Sebastian Ruder,et al.  Universal Language Model Fine-tuning for Text Classification , 2018, ACL.

[30]  Alexander Clark,et al.  Grammaticality, Acceptability, and Probability: A Probabilistic View of Linguistic Knowledge , 2017, Cogn. Sci..

[31]  Lukasz Kaiser,et al.  Attention is All you Need , 2017, NIPS.

[32]  Richard Socher,et al.  Pointer Sentinel Mixture Models , 2016, ICLR.

[33]  Yonatan Belinkov,et al.  Fine-grained Analysis of Sentence Embeddings Using Auxiliary Prediction Tasks , 2016, ICLR.

[34]  Emmanuel Dupoux,et al.  Assessing the Ability of LSTMs to Learn Syntax-Sensitive Dependencies , 2016, TACL.

[35]  Xing Shi,et al.  Does String-Based Neural MT Learn Source Syntax? , 2016, EMNLP.

[36]  Edward P. Stabler,et al.  An Introduction To Syntactic Analysis And Theory , 2016 .

[37]  Nitin Madnani,et al.  Predicting Grammaticality on an Ordinal Scale , 2014, ACL.

[38]  Edward P. Stabler,et al.  An Introduction to Syntactic Analysis and Theory , 2013 .

[39]  G. Chierchia,et al.  Logic in Grammar: Polarity, Free Choice, and Intervention , 2013 .

[40]  Philipp Koehn,et al.  Scalable Modified Kneser-Ney Language Model Estimation , 2013, ACL.

[41]  Alec Marantz,et al.  Verbal argument structure: Events and participants , 2013 .

[42]  Hermann Ney,et al.  LSTM Neural Networks for Language Modeling , 2012, INTERSPEECH.

[43]  Kenneth Heafield,et al.  KenLM: Faster and Smaller Language Model Queries , 2011, WMT@EMNLP.

[44]  Dan Klein,et al.  Faster and Smaller N-Gram Language Models , 2011, ACL.

[45]  Lukás Burget,et al.  Recurrent neural network based language model , 2010, INTERSPEECH.

[46]  B. Geurts,et al.  At least et al: The semantic of scalar modifiers , 2007 .

[47]  Thorsten Brants,et al.  Large Language Models in Machine Translation , 2007, EMNLP.

[48]  Morten H. Christiansen,et al.  Uncovering the Richness of the Stimulus: Structure Dependence and Indirect Statistical Evidence , 2005, Cogn. Sci..

[49]  David Adger,et al.  Core Syntax: A Minimalist Approach , 2003 .

[50]  Carson T. Schütze The empirical base of linguistics: Grammaticality judgments and linguistic methodology , 1998 .

[51]  Jürgen Schmidhuber,et al.  Long Short-Term Memory , 1997, Neural Computation.

[52]  Stanley F. Chen,et al.  An Empirical Study of Smoothing Techniques for Language Modeling , 1996, ACL.

[53]  Betty J. Birner,et al.  Definiteness and the English Existential , 1995 .

[54]  K. Bock,et al.  Broken agreement , 1991, Cognitive Psychology.

[55]  Norbert Hornstein,et al.  Logic as Grammar , 1984 .