Optical fiber temperature sensor with mK resolution and absolute frequency reference

We reported an optical fiber based temperature sensor with mK-order resolution, wide temperature range and excellent long term stability. The sensor composes of a fiber Bragg grating (FBG) as the sensing element, an HCN gas cell for absolute frequency reference. A distributed feedback diode laser with current modulation is used as the light source. To overcome the frequency-sweep nonlinearity of the laser, an auxiliary Fabry-Perot interferometer with free spectrum range of 10 MHz is employed. A cross-correlation algorithm is employed to calculate the center frequency difference between the FBG and the gas cell. With the proposed configuration, a temperature resolution of 0.41 mK was demonstrated in experiment. To the best knowledge, this is the first time that an mK order temperature resolution has been achieved by optical fiber sensor.