Enhancing coating functionality using nanoscience and nanotechnology

Nanoscience is currently enabling evolutionary changes in several technology areas but new paradigms will eventually have a much wider and revolutionary impact. In the area of coatings, new approaches utilizing nanoscale effects can be used to create coatings with significantly optimized or enhanced properties. The ultimate impact of nanoscience and nanotechnology in the area of coatings, and other potential application areas, will depend on our ability to direct the assembly of hierarchical systems that include nanostructures. Two fundamentally different approaches to direct self-assembly are discussed. One approach involves ordering existing identifiable components into the desired coating or structures. The second approach involves the formation of new structures during the coating process. Potential impacts of nanostructure properties on film characteristics and applications are discussed with a focus on coating reactivity, corrosion resistance, strength and durability.

[1]  S. Nepijko,et al.  TEM study of tantalum clusters on Al2O3/NiAl(110) , 1998 .

[2]  C. Peden,et al.  Effect of Platinum Nanocluster Size and Titania Surface Structure upon CO Surface Chemistry on Platinum-Supported TiO2 (110) , 2001 .

[3]  R. Mckee,et al.  Crystalline Oxides on Silicon: The First Five Monolayers , 1998 .

[4]  J. Kirschvink,et al.  Magnetite biomineralization in the human brain. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[5]  Williams,et al.  Shape transition of germanium nanocrystals on a silicon (001) surface from pyramids to domes , 1998, Science.

[6]  J. N. Russell,et al.  Cycloaddition chemistry of organic molecules with semiconductor surfaces. , 2000, Accounts of chemical research.

[7]  Kenneth M. Kemner,et al.  Functionalized Monolayers on Ordered Mesoporous Supports , 1997 .

[8]  N. Petch,et al.  The Cleavage Strength of Polycrystals , 1953 .

[9]  R Richard Nötzel,et al.  Self-organized growth of quantum-dot structures , 1996 .

[10]  Alice Dohnalkova,et al.  Structural and Chemical Characterization of Aligned Crystalline Nanoporous MgO Films Grown via Reactive Ballistic Deposition , 2002 .

[11]  A. Rogach,et al.  A New Approach to Crystallization of CdSe Nanoparticles into Ordered Three‐Dimensional Superlattices , 2001 .

[12]  Tan Pham,et al.  Preparation and Characterization of Gold Nanoshells Coated with Self-Assembled Monolayers , 2002 .

[13]  A. Navrotsky,et al.  Energetics of nanocrystalline TiO2 , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[14]  Yong Liang,et al.  Nanoscale copper oxide ring structure on an SrTiO3 substrate , 2003 .

[15]  Philip W. Bartram,et al.  Reactions of VX, GD, and HD with Nanosize MgO , 1999 .

[16]  J. Weertman,et al.  Mechanical behavior of nanocrystalline metals , 1992 .

[17]  M. Engelhard,et al.  Preparation and Characterization of Polyaniline‐Palladium Composite Films , 1995 .

[18]  W. Bainbridge,et al.  Societal implications of nanoscience and nanotechnology , 2001 .

[19]  E. Hall,et al.  The Deformation and Ageing of Mild Steel: II Characteristics of the L ders Deformation , 1951 .

[20]  T. L. Hill A Different Approach to Nanothermodynamics , 2001 .

[21]  P. Trzaskoma-Paulette,et al.  Synthesis and Properties of Cerium and Titanium Oxide Thin Coatings for Corrosion Protection of 304 Stainless Steel , 1997 .

[22]  R. Winston Revie,et al.  Uhlig's Corrosion Handbook , 2005 .

[23]  Hood Chatham,et al.  Oxygen diffusion barrier properties of transparent oxide coatings on polymeric substrates , 1996 .

[24]  Wendy D. Bennett,et al.  Organic light-emitting devices with extended operating lifetimes on plastic substrates , 2002 .

[25]  R. S. Schofield,et al.  Electroluminescent zinc(II) bis(8-hydroxyquinoline): structural effects on electronic states and device performance. , 2002, Journal of the American Chemical Society.

[26]  G. Wallace,et al.  Electroactive conducting polymers for corrosion control , 2002 .

[27]  R. Hoagland,et al.  Computer Simulation of Misfit Dislocation Mobility in Cu/Ni and Cu/Ag Interfaces , 2000 .

[28]  G. Wallace,et al.  Electroactive conducting polymers for corrosion control , 2002 .

[29]  D. Baer,et al.  Effects of titania surface structure on the nucleation and growth of Pt nanoclusters on rutile TiO2(110) , 2001 .

[30]  J. Banfield,et al.  UNDERSTANDING POLYMORPHIC PHASE TRANSFORMATION BEHAVIOR DURING GROWTH OF NANOCRYSTALLINE AGGREGATES: INSIGHTS FROM TIO2 , 2000 .

[31]  Jun Liu,et al.  Ordered Hierarchical Porous Materials: Towards Tunable Size‐ and Shape‐Selective Microcavities in Nanoporous Channels , 2000 .

[32]  Jun Liu,et al.  Designing Surface Chemistry in Mesoporous Silica , 2000 .

[33]  S. Chambers A potential role in spintronics , 2002 .

[34]  D. Braga,et al.  Intermolecular interactions in nonorganic crystal engineering. , 2000, Accounts of chemical research.

[35]  J. Hirth,et al.  On the strengthening effects of interfaces in multilayer fcc metallic composites , 2002 .

[36]  E. Hall,et al.  The Deformation and Ageing of Mild Steel: III Discussion of Results , 1951 .

[37]  H. Jang,et al.  Effect of Particle Size and Phase Composition of Titanium Dioxide Nanoparticles on the Photocatalytic Properties , 2001 .

[38]  D. Braga,et al.  Organometallic polymorphism and phasetransitions , 2000 .

[39]  S. Nepijko,et al.  Structural Investigation of Palladium Clusters on γ-AlO3(111)/NiAl(110) with Transmission Electron Microscopy , 1999 .

[40]  F. Zheng,et al.  Carbon Nanotube Synthesis Using Mesoporous Silica Templates , 2002 .

[41]  David R Walt,et al.  Top-to-bottom functional design , 2002, Nature materials.

[42]  B. Kear,et al.  Chemical processing and applications for nanostructured materials , 1995 .

[43]  S. C. Parker,et al.  The Effect of Size-Dependent Nanoparticle Energetics on Catalyst Sintering , 2002, Science.

[44]  F. Boswell,et al.  Precise Determination of Lattice Constants by Electron Diffraction and Variations in the Lattice Constants of Very Small Crystallites , 1951 .

[45]  R. Hamers Flexible electronic futures , 2001, Nature.

[46]  A. Hill,et al.  Degradation Studies of Polyolefins Incorporating Transparent Nanoparticulate Zinc Oxide UV Stabilizers , 2002 .

[47]  M. Donley,et al.  Nanostructured silicon sol-gel surface treatments for Al 2024-T3 protection , 2000 .

[48]  Claudia Barolo,et al.  Design, synthesis, and application of amphiphilic ruthenium polypyridyl photosensitizers in solar cells based on nanocrystalline TiO2 films , 2002 .

[49]  J. S. Beck,et al.  Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism , 1992, Nature.

[50]  S. Nepijko,et al.  The structure of Pt-aggregates on a supported thin aluminum oxide film in comparison with unsupported alumina: a transmission electron microscopy study , 1997 .

[51]  A. S. Lea,et al.  Synthesis and Characterization of Self-Assembled Cu2O Nano-Dots , 2001 .

[52]  Ross,et al.  Transition States Between Pyramids and Domes During Ge/Si Island Growth. , 1999, Science.

[53]  Jun Liu,et al.  Entrapping enzyme in a functionalized nanoporous support. , 2002, Journal of the American Chemical Society.

[54]  K. Swider-Lyons,et al.  Power from the Structure Within: Application of Nanoarchitectures to Batteries and Fuel Cells , 2002 .

[55]  M. Engelhard,et al.  Selective sorption of cesium using self-assembled monolayers on mesoporous supports. , 2001, Environmental science & technology.

[56]  Lei Wei-ning Electrodeposited Nanocrystalline Materials , 2003 .