A study of low-power ultra wideband radio transceiver architectures

The paper studies low-power ultra wideband (UWB) transceiver architectures. First, three different architectures for the impulse-radio UWB transceiver are studied, while investigating the power-performance tradeoffs. The paper illustrates that a more power-efficient architecture should perform part of the signal processing in the analog-domain. Next, the multiband UWB transceiver is studied and power-efficient circuits for the front-end of the UWB transceiver are presented. Finally, the performance and power consumption of these transceivers are compared and a number of design indications are provided.

[1]  Behzad Razavi,et al.  Principles of Data Conversion System Design , 1994 .

[2]  Asad A. Abidi,et al.  A 6 b 1.3 GSample/s A/D converter in 0.35 μm CMOS , 2001 .

[3]  Claude E. Shannon,et al.  A Mathematical Theory of Communications , 1948 .

[4]  D. J. Allstot,et al.  A 0.5-8.5 GHz fully differential CMOS distributed amplifier , 2002 .

[5]  J.E. Mazo,et al.  Digital communications , 1985, Proceedings of the IEEE.

[6]  Brian M. Sadler,et al.  High-speed A/D conversion for ultra-wideband signals based on signal projection over basis functions , 2004, 2004 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[7]  P. Heydari,et al.  A 1.8V three-stage 25GHz 3dB-BW differential non-uniform downsized distributed amplifier , 2005, ISSCC. 2005 IEEE International Digest of Technical Papers. Solid-State Circuits Conference, 2005..

[8]  H. Gustat,et al.  An integrated CMOS RF synthesizer for 802.11a wireless LAN , 2003, IEEE J. Solid State Circuits.

[9]  R. Michael Buehrer,et al.  Ultra-Wideband Wireless Systems , 2005 .

[10]  S. Roy,et al.  Design challenges for very high data rate UWB systems , 2002, Conference Record of the Thirty-Sixth Asilomar Conference on Signals, Systems and Computers, 2002..

[11]  Bruce A. Wooley,et al.  A 5-GHz CMOS transceiver for IEEE 802.11a wireless LAN systems , 2002 .

[12]  B. Achiriloaie,et al.  VI REFERENCES , 1961 .

[13]  Fernando Ramírez-Mireles,et al.  Performance of ultrawideband SSMA using time hopping and M-ary PPM , 2001, IEEE J. Sel. Areas Commun..

[14]  Ahmad Yazdi,et al.  Design and analysis of an ultrawide-band distributed CMOS mixer , 2005, IEEE Transactions on Very Large Scale Integration (VLSI) Systems.

[15]  G. R. Aiello,et al.  Ultra-wideband wireless systems , 2003 .

[16]  J.A.C. Bingham,et al.  Multicarrier modulation for data transmission: an idea whose time has come , 1990, IEEE Communications Magazine.

[17]  A. Bevilacqua,et al.  An ultra-wideband CMOS LNA for 3.1 to 10.6 GHz wireless receivers , 2004, 2004 IEEE International Solid-State Circuits Conference (IEEE Cat. No.04CH37519).

[18]  Moe Z. Win,et al.  On the robustness of ultra-wide bandwidth signals in dense multipath environments , 1998, IEEE Communications Letters.

[19]  V. Srinivasa Somayazulu,et al.  Ultrawideband radio design: the promise of high-speed, short-range wireless connectivity , 2004, Proceedings of the IEEE.

[20]  S. Pellerano,et al.  A 13.5-mW 5-GHz frequency synthesizer with dynamic-logic frequency divider , 2004, IEEE Journal of Solid-State Circuits.

[21]  M. L. Welborn System considerations for ultra-wideband wireless networks , 2001, Proceedings RAWCON 2001. 2001 IEEE Radio and Wireless Conference (Cat.No.01EX514).

[22]  Wai-Kai Chen Passive and Active Filters: Theory and Implementations , 1986 .

[23]  Won Namgoong Channelized digital receivers for impulse radio , 2003, IEEE International Conference on Communications, 2003. ICC '03..