Next-Generation Sequence Assemblers

There are several assemblers employed in next-generation environment. These may be classified according to their respective graph construction approaches (see Chap. 9) or their targeted data sets. In this chapter, we will present select examples of next-generation sequence assemblers and discuss their implementation approaches. The assemblers we discuss have been selected carefully to represent the available assembly approaches and the first four stages of the assembly process. Tools related to assembly assessment, the fifth stage, have been previously discussed in Chap. 10.

[1]  René L. Warren,et al.  Assembling millions of short DNA sequences using SSAKE , 2006, Bioinform..

[2]  A. Gnirke,et al.  High-quality draft assemblies of mammalian genomes from massively parallel sequence data , 2010, Proceedings of the National Academy of Sciences.

[3]  C. Nusbaum,et al.  ALLPATHS: de novo assembly of whole-genome shotgun microreads. , 2008, Genome research.

[4]  Heng Li,et al.  Exploring single-sample SNP and INDEL calling with whole-genome de novo assembly , 2012, Bioinform..

[5]  Rayan Chikhi,et al.  Space-efficient and exact de Bruijn graph representation based on a Bloom filter , 2012, Algorithms for Molecular Biology.

[6]  Mark J. P. Chaisson,et al.  De novo fragment assembly with short mate-paired reads: Does the read length matter? , 2009, Genome research.

[7]  Siu-Ming Yiu,et al.  Meta-IDBA: a de Novo assembler for metagenomic data , 2011, Bioinform..

[8]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[9]  Bertil Schmidt,et al.  A fast hybrid short read fragment assembly algorithm , 2009, Bioinform..

[10]  David Hernández,et al.  De novo bacterial genome sequencing: millions of very short reads assembled on a desktop computer. , 2008, Genome research.

[11]  Mihai Pop,et al.  Exploiting sparseness in de novo genome assembly , 2012, BMC Bioinformatics.

[12]  Martin Vingron,et al.  Oases: robust de novo RNA-seq assembly across the dynamic range of expression levels , 2012, Bioinform..

[13]  Andreas Tauch,et al.  Rapid hybrid de novo assembly of a microbial genome using only short reads: Corynebacterium pseudotuberculosis I19 as a case study. , 2011, Journal of microbiological methods.

[14]  Ruiqiang Li,et al.  SOAP: short oligonucleotide alignment program , 2008, Bioinform..

[15]  Xuan Li,et al.  Optimizing hybrid assembly of next-generation sequence data from Enterococcus faecium: a microbe with highly divergent genome , 2012, BMC Systems Biology.

[16]  Weng-Keen Wong,et al.  QSRA – a quality-value guided de novo short read assembler , 2009, BMC Bioinformatics.

[17]  François Laviolette,et al.  Ray: Simultaneous Assembly of Reads from a Mix of High-Throughput Sequencing Technologies , 2010, J. Comput. Biol..

[18]  Jared T. Simpson,et al.  Efficient construction of an assembly string graph using the FM-index , 2010, Bioinform..

[19]  Sara El-Metwally,et al.  Next-Generation Sequence Assembly: Four Stages of Data Processing and Computational Challenges , 2013, PLoS Comput. Biol..

[20]  Huanming Yang,et al.  De novo assembly of human genomes with massively parallel short read sequencing. , 2010, Genome research.

[21]  Mihai Pop,et al.  Minimus: a fast, lightweight genome assembler , 2007, BMC Bioinformatics.

[22]  Eugene W. Myers,et al.  A whole-genome assembly of Drosophila. , 2000, Science.

[23]  R. Durbin,et al.  Efficient de novo assembly of large genomes using compressed data structures. , 2012, Genome research.

[24]  E. Birney,et al.  Velvet: algorithms for de novo short read assembly using de Bruijn graphs. , 2008, Genome research.

[25]  Haixu Tang,et al.  Fragment assembly with double-barreled data , 2001, ISMB.

[26]  Vincent J. Magrini,et al.  Extending assembly of short DNA sequences to handle error , 2007, Bioinform..

[27]  Daniel R. Zerbino,et al.  Pebble and Rock Band: Heuristic Resolution of Repeats and Scaffolding in the Velvet Short-Read de Novo Assembler , 2009, PloS one.

[28]  P. Pevzner,et al.  De Novo Repeat Classification and Fragment Assembly , 2004 .

[29]  Luonan Chen,et al.  Modelling biological systems from molecules to dynamical networks , 2012, BMC Systems Biology.

[30]  Thomas Wetter,et al.  Genome Sequence Assembly Using Trace Signals and Additional Sequence Information , 1999, German Conference on Bioinformatics.

[31]  Sergey Koren,et al.  Aggressive assembly of pyrosequencing reads with mates , 2008, Bioinform..

[32]  Jian Wang,et al.  SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler , 2012, GigaScience.

[33]  Steven J. M. Jones,et al.  De novo genome sequence assembly of a filamentous fungus using Sanger, 454 and Illumina sequence data , 2009, Genome Biology.

[34]  Siu-Ming Yiu,et al.  IDBA - A Practical Iterative de Bruijn Graph De Novo Assembler , 2010, RECOMB.

[35]  N. Friedman,et al.  Trinity: reconstructing a full-length transcriptome without a genome from RNA-Seq data , 2011, Nature Biotechnology.

[36]  Steven J. M. Jones,et al.  Abyss: a Parallel Assembler for Short Read Sequence Data Material Supplemental Open Access , 2022 .

[37]  A. Gnirke,et al.  ALLPATHS 2: small genomes assembled accurately and with high continuity from short paired reads , 2009, Genome Biology.

[38]  P. Pevzner,et al.  An Eulerian path approach to DNA fragment assembly , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[39]  Siu-Ming Yiu,et al.  IDBA-UD: a de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth , 2012, Bioinform..

[40]  Mark J. P. Chaisson,et al.  Short read fragment assembly of bacterial genomes. , 2008, Genome research.

[41]  Juliane C. Dohm,et al.  SHARCGS, a fast and highly accurate short-read assembly algorithm for de novo genomic sequencing. , 2007, Genome research.

[42]  Sergey I. Nikolenko,et al.  SPAdes: A New Genome Assembly Algorithm and Its Applications to Single-Cell Sequencing , 2012, J. Comput. Biol..

[43]  G. Sherlock,et al.  Rnnotator: an automated de novo transcriptome assembly pipeline from stranded RNA-Seq reads , 2010, BMC Genomics.

[44]  Chuanli Wang,et al.  Systematic Comparison of C3 and C4 Plants Based on Metabolic Network Analysis , 2012, BMC Systems Biology.

[45]  Michael Roberts,et al.  The MaSuRCA genome assembler , 2013, Bioinform..

[46]  James R. Knight,et al.  Genome sequencing in microfabricated high-density picolitre reactors , 2005, Nature.

[47]  Stefan Kurtz,et al.  Readjoiner: a fast and memory efficient string graph-based sequence assembler , 2012, BMC Bioinformatics.

[48]  Steven Skiena,et al.  Crystallizing short-read assemblies around seeds , 2009, BMC Bioinformatics.

[49]  Haixu Tang,et al.  Fragment assembly with short reads , 2004, Bioinform..