Rotation-reversal symmetries in crystals and handed structures.

Symmetry is a powerful framework to perceive and predict the physical world. The structure of materials is described by a combination of rotations, rotation-inversions and translational symmetries. By recognizing the reversal of static structural rotations between clockwise and counterclockwise directions as a distinct symmetry operation, here we show that there are many more structural symmetries than are currently recognized in right- or left-handed helices, spirals, and in antidistorted structures composed equally of rotations of both handedness. For example, we show that many antidistorted perovskites possess twice the number of symmetry elements as conventionally identified. These new 'roto' symmetries predict new forms for 'roto' properties that relate to static rotations, such as rotoelectricity, piezorotation, and rotomagnetism. They enable a symmetry-based search for new phenomena, such as multiferroicity involving a coupling of spins, electric polarization and static rotations. This work is relevant to structure-property relationships in all materials and structures with static rotations.

[1]  J. Perez-Mato,et al.  Mode crystallography of distorted structures. , 2010, Acta crystallographica. Section A, Foundations of crystallography.

[2]  A. Lakhtakia,et al.  Negatively refracting chiral metamaterials: a review , 2010 .

[3]  N. Spaldin,et al.  Structural phases of strained LaAlO3 driven by octahedral tilt instabilities , 2008, 0808.3792.

[4]  J. Perez-Mato,et al.  AMPLIMODES: symmetry‐mode analysis on the Bilbao Crystallographic Server , 2009 .

[5]  D. Griffiths Introduction to Electrodynamics , 2017 .

[6]  C. Fennie,et al.  Coexistence of weak ferromagnetism and ferroelectricity in the high pressure LiNbO3-type phase of FeTiO3. , 2009, Physical review letters.

[7]  M. Yashima,et al.  Structural phase transition and octahedral tilting in the calcium titanate perovskite CaTiO3 , 2009 .

[8]  W. Berlinger,et al.  Static Critical Exponents at Structural Phase Transitions , 1971 .

[9]  A. M. Glazer,et al.  The classification of tilted octahedra in perovskites , 1972 .

[10]  Nicola A. Spaldin,et al.  Weak ferromagnetism and magnetoelectric coupling in bismuth ferrite , 2005 .

[11]  D. B. Litvin Tables of crystallographic properties of magnetic space groups. , 2008, Acta crystallographica. Section A, Foundations of crystallography.

[12]  F. Guyot,et al.  High-temperature heat capacity and phase transitions of CaTiO3 perovskite , 1993 .

[13]  K. Knight,et al.  Strain mechanism for order-parameter coupling through successive phase transitions in PrAlO3 , 2005 .

[14]  A. P. Ramirez,et al.  STRUCTURAL TUNING OF FERROMAGNETISM IN A 3D CUPRATE PEROVSKITE , 1999 .

[15]  Ravhi S Kumar,et al.  High pressure structural studies on SrRuO3 , 2008 .

[16]  Robert E. Newnham,et al.  Properties of Materials: Anisotropy, Symmetry, Structure , 2005 .

[17]  H. Urlaub,et al.  Supplementary Table 3 , 2011 .

[18]  I. S. Zheludev The optical activity of crystals induced by an electric field (electrogyration) , 1978 .

[19]  Wolfram Saenger,et al.  Principles of Nucleic Acid Structure , 1983 .

[20]  Litvin Magnetic subperiodic groups. , 1999, Acta crystallographica. Section A, Foundations of crystallography.

[21]  C. Fennie Ferroelectrically induced weak ferromagnetism by design. , 2007, Physical review letters.

[22]  H. Stokes,et al.  Group-theoretical analysis of octahedral tilting in perovskites , 1998 .

[23]  R. Birss,et al.  Symmetry and magnetism , 1964 .

[24]  H. Schmid Some symmetry aspects of ferroics and single phase multiferroics* , 2008 .

[25]  L. Elcoro,et al.  Modes vs. modulations: Symmetry-mode analysis of commensurate modulated structures compared with the superspace method , 2010 .

[26]  B. Chakoumakos,et al.  Neutron powder diffraction study of rhombohedral rare-earth aluminates and the rhombohedral to cubic phase transition , 2000 .

[27]  R. Angel,et al.  High-pressure structural behavior of GdAlO3 and GdFeO3 perovskites , 2004 .

[28]  H. Mao,et al.  Octahedral tilting evolution and phase transition in orthorhombic NaMgF3 perovskite under pressure , 2005 .

[29]  G. Shirane,et al.  O3 tilt and the Pb/(Zr/Ti) displacement order parameters in Zr-rich PbZr1-xTixO3 from 20 to 500 K , 1997 .

[30]  B. Vainshtein,et al.  Diffraction of X-rays by chain molecules , 1966 .

[31]  V Gopalan,et al.  Magnetic color symmetry of lattice rotations in a diamagnetic material. , 2008, Physical review letters.

[32]  V. Wadhawan Introduction to Ferroic Materials , 2000 .

[33]  Toroidal moments as indicator for magneto-electric coupling: the case of BiFeO3 versus FeTiO3 , 2009, 0901.2812.

[34]  J. Nye Physical Properties of Crystals: Their Representation by Tensors and Matrices , 1957 .

[35]  R. Clarke,et al.  The ferroelectric-ferroelectric transition in rhombohedral lead zirconate-titanate , 1976 .

[36]  H. Krane,et al.  Effect of pressure on phase transitions in K1-xNaxMnF3 (x = 0.04) , 1999 .

[37]  Philippe Ghosez,et al.  Improper ferroelectricity in perovskite oxide artificial superlattices , 2008, Nature.

[38]  M. Srinivasarao Chirality and polymers , 1999 .

[39]  P. Dobson,et al.  Physical Properties of Crystals – Their Representation by Tensors and Matrices , 1985 .

[40]  Y. Shen,et al.  A novel spectroscopic probe for molecular chirality. , 2006, Chirality.

[41]  W. Opechowski,et al.  Crystallographic and Metacrystallographic Groups , 1987, December.

[42]  David E. Tanner,et al.  ISODISPLACE: a web-based tool for exploring structural distortions , 2006 .

[43]  M. Fiebig,et al.  Observation of ferrotoroidic domains , 2007, Nature.

[44]  T L Blundell,et al.  Symmetry, stability, and dynamics of multidomain and multicomponent protein systems. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[45]  A. Glazer,et al.  Simple ways of determining perovskite structures , 1975 .

[46]  Ziyu Wu,et al.  Generalized gradient approximation calculations of the pressure-induced phase transition of YAlO3 perovskite , 2006, Journal of physics. Condensed matter : an Institute of Physics journal.

[47]  W. G. Marshall,et al.  Pressure-induced rotation of spontaneous polarization in monoclinic and triclinic PbZr 0.52 Ti 0.48 O 3 , 2005 .

[48]  Alexei A. Maradudin,et al.  Space groups for solid state scientists , 1979 .

[49]  E. Furman,et al.  Thermodynamic theory of the lead zirconate-titanate solid solution system, part IV: Tilting of the oxygen octahedra , 1989 .

[50]  C. Fennie,et al.  Hybrid Improper Ferroelectricity: A Mechanism for Controllable Magnetization-Polarization Coupling , 2010, 1007.1003.