Constraint-based scheduling

Given a set of resources with given capacities, a set of activities with given processing times and resource requirements, and a set of temporal constraints between activities, a “pure” scheduling problem consists of deciding when to execute each activity, so that both temporal constraints and resource constraints are satisfied. Most scheduling problems can easily be represented as instances of the constraint satisfaction problem (Kumar, 1992): given a set of variables, a set of possible values (domain) for each variable, and a set of constraints between the variables, assign a value to each variable, so that all the constraints are satisfied.

[1]  William J. Cook,et al.  A Computational Study of the Job-Shop Scheduling Problem , 1991, INFORMS Journal on Computing.

[2]  Ehl Emile Aarts,et al.  A computational study of constraint satisfaction for multiple capacitated job shop scheduling , 1996 .

[3]  Marie-Claude Portmann,et al.  Branch and bound crossed with GA to solve hybrid flowshops , 1998, Eur. J. Oper. Res..

[4]  A. Gall Un système interactif d'aide à la décision pour l'ordonnancement et le pilotage en temps réel d'atelier , 1989 .

[5]  Philippe Baptiste,et al.  Constraint Propagation Techniques for Disjunctive Scheduling: The Preemptive Case , 1996, ECAI.

[6]  Claude Le Pape,et al.  Implementation of resource constraints in ILOG SCHEDULE: a library for the development of constraint-based scheduling systems , 1994 .

[7]  Wpm Wim Nuijten,et al.  Time and resource constrained scheduling : a constraint satisfaction approach , 1994 .

[8]  Philippe Baptiste,et al.  Satisfiability tests and time‐bound adjustmentsfor cumulative scheduling problems , 1999, Ann. Oper. Res..

[9]  Matthew L. Ginsberg,et al.  Dynamic Backtracking , 1993, J. Artif. Intell. Res..

[10]  Michel Leconte,et al.  Beyond the Glass Box: Constraints as Objects , 1995, ILPS.

[11]  Amedeo Cesta,et al.  Gaining efficiency and flexibility in the simple temporal problem , 1996, Proceedings Third International Workshop on Temporal Representation and Reasoning (TIME '96).

[12]  J. Erschler,et al.  Ordonnancement de tâches sous contraintes: une approche énergetique , 1992 .

[13]  J. Carlier,et al.  Adjustment of heads and tails for the job-shop problem , 1994 .

[14]  Guy L. Steele,et al.  The definition and implementation of a computer programming language based on constraints , 1980 .

[15]  Wim Nuijten,et al.  Solving Scheduling Problems with Setup Times and Alternative Resources , 2000, AIPS.

[16]  J. Erschler,et al.  Raisonnement temporel sous contraintes de ressource et problèmes d'ordonnancement , 1991 .

[17]  Philippe Baptiste,et al.  Heuristic Control of a Constraint-Based Algorithm for the Preemptive Job-Shop Scheduling Problem , 1999, J. Heuristics.

[18]  Norman M. Sadeh,et al.  Intelligent Backtracking Techniques for Job Shop Scheduling , 1992, KR.

[19]  Yves Colombani Constraint Programming: an Efficient and Practical Approach to Solving the Job-Shop Problem , 1996, CP.

[20]  Nicolas Beldiceanu,et al.  Extending CHIP in order to solve complex scheduling and placement problems , 1993, JFPL.

[21]  Claude Le Pape Des systèmes d'ordonnancement flexibles et opportunistes , 1988 .

[22]  Claude Le Pape Using constraint propagation in blackboard systems: a flexible software architecture for reactive and distributed systems , 1992, Computer.

[23]  Eric Pinson,et al.  A Practical Use of Jackson''s Preemptive Schedule for Solving the Job-Shop Problem. Annals of Opera , 1991 .

[24]  Michel Minoux,et al.  Graphs and Algorithms , 1984 .

[25]  Richard E. Korf,et al.  Improved Limited Discrepancy Search , 1996, AAAI/IAAI, Vol. 1.

[26]  Gerald J. Sussman,et al.  Forward Reasoning and Dependency-Directed Backtracking in a System for Computer-Aided Circuit Analysis , 1976, Artif. Intell..

[27]  François Laburthe,et al.  Improved CLP Scheduling with Task Intervals , 1994, ICLP.

[28]  Claude Le Pape,et al.  Adapting the behavior of a job-shop scheduling system , 1991, Decis. Support Syst..

[29]  Philippe Baptiste,et al.  Global Constraints for Partial CSPs: A Case-Study of Resource and Due Date Constraints , 1998, CP.

[30]  Jan Karel Lenstra,et al.  Job Shop Scheduling by Local Search , 1996, INFORMS J. Comput..

[31]  Vipin Kumar,et al.  Algorithms for Constraint-Satisfaction Problems: A Survey , 1992, AI Mag..

[32]  Philippe Baptiste,et al.  A Theoretical and Experimental Comparison of Constraint Propagation Techniques for Disjunctive Scheduling , 1995, IJCAI.

[33]  C. Le Pape,et al.  Three mechanisms for managing resource constraints in a library for constraint-based scheduling , 1995 .

[34]  Olivier Lhomme,et al.  Consistency Techniques for Numeric CSPs , 1993, IJCAI.

[35]  Jean-Claude Latombe,et al.  Failure Processing in a System for Designing Complex Assemblies , 1979, IJCAI.

[36]  F. Roubellat,et al.  Caractérisation d'un ensemble d'ordonnancements avec contraintes de ressources de type cumulatif , 1992 .

[37]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[38]  Philippe Baptiste Disjunctive constraints for manufacturing scheduling: Principles and extensions , 1996 .

[39]  Jacques Carlier,et al.  A new LP-based lower bound for the cumulative scheduling problem , 2000, Eur. J. Oper. Res..

[40]  Patrick Prosser,et al.  HYBRID ALGORITHMS FOR THE CONSTRAINT SATISFACTION PROBLEM , 1993, Comput. Intell..