Unique capabilities of AC frequency scanning and its implementation on a Mars Organic Molecule Analyzer linear ion trap.

A limitation of conventional quadrupole ion trap scan modes which use rf amplitude control for mass scanning is that, in order to detect a subset of an ion population, the rest of the ion population must also be interrogated. That is, ions cannot be detected out of order; they must be detected in order of either increasing or decreasing mass-to-charge (m/z). However, an ion trap operated in the ac frequency scan mode, where the rf amplitude is kept constant and instead the ac frequency is used for mass-selective operations, has no such limitation because any variation in the ac frequency affects only the subset of ions whose secular frequencies match the perturbation frequency. Hence, an ion trap operated in the ac frequency scan mode can perform any arbitrary mass scan, as well as a sequence of scans, using a single ion injection; we demonstrate both capabilities here. Combining these two capabilities, we demonstrate the acquisition of a full mass spectrum, a product ion spectrum, and a second generation product ion spectrum using a single ion injection event. We further demonstrate a "segmented scan" in which different mass ranges are interrogated at different rf amplitudes in order to improve resolution over a portion of the mass range, and a "periodic scan" in which ions are continuously introduced into the ion trap to achieve a nearly 100% duty cycle. These unique scan modes, along with other characteristics of ac frequency scanning, are particularly appropriate for miniature ion trap mass spectrometers. Hence, implementation of ac frequency scanning on a prototype of the Mars Organic Molecule Analyzer mass spectrometer is also described.

[1]  R. Cooks,et al.  Implementation of Precursor and Neutral Loss Scans on a Miniature Ion Trap Mass Spectrometer and Performance Comparison to a Benchtop Linear Ion Trap , 2018, Journal of The American Society for Mass Spectrometry.

[2]  K. Ni,et al.  Rapid mass spectrometry analysis of a rectilinear ion trap by continuous secular frequency scanning. , 2017, Rapid communications in mass spectrometry : RCM.

[3]  R. Cooks,et al.  Improving mass assignments in quadrupole ion traps operated using ac scans: Theory and experimental validation , 2017 .

[4]  R. Cooks,et al.  Ion isolation and multigenerational collision-induced dissociation using the inverse Mathieu q scan. , 2017, Rapid communications in mass spectrometry : RCM.

[5]  William L. Fatigante,et al.  Analytical Validation of a Portable Mass Spectrometer Featuring Interchangeable, Ambient Ionization Sources for High Throughput Forensic Evidence Screening , 2017, Journal of The American Society for Mass Spectrometry.

[6]  R. Cooks,et al.  Linear mass scans in quadrupole ion traps using the inverse Mathieu q scan. , 2016, Rapid communications in mass spectrometry : RCM.

[7]  P. Cheng,et al.  A hand-portable digital linear ion trap mass spectrometer. , 2016, The Analyst.

[8]  Li Ma,et al.  Resonance ejection mass scan using dipole excitation with a non-integer frequency ratio in a digital linear ion trap mass spectrometer. , 2016, Rapid communications in mass spectrometry : RCM.

[9]  R. Cooks,et al.  Calibration procedure for secular frequency scanning in ion trap mass spectrometers. , 2016, Rapid communications in mass spectrometry : RCM.

[10]  Xiang Fang,et al.  Characteristics of Ion Activation and Collision Induced Dissociation Using Digital Ion Trap Technology , 2016, Journal of The American Society for Mass Spectrometry.

[11]  J. S. Wiley,et al.  Experimental Characterization of Secular Frequency Scanning in Ion Trap Mass Spectrometers , 2016, Journal of The American Society for Mass Spectrometry.

[12]  Brae V. Petersen,et al.  Radiofrequency trapping of ions in a pure toroidal potential distribution , 2016 .

[13]  R. Cooks,et al.  Miniature and Fieldable Mass Spectrometers: Recent Advances. , 2016, Analytical chemistry.

[14]  Adam E. O'Leary,et al.  Combining a portable, tandem mass spectrometer with automated library searching – an important step towards streamlined, on-site identification of forensic evidence , 2015 .

[15]  P Coll,et al.  Organic molecules in the Sheepbed Mudstone, Gale Crater, Mars , 2015, Journal of geophysical research. Planets.

[16]  Zheng Ouyang,et al.  Design of Portable Mass Spectrometers with Handheld Probes: Aspects of the Sampling and Miniature Pumping Systems , 2015, Journal of The American Society for Mass Spectrometry.

[17]  P. Reilly,et al.  Mapping ion stability in digitally driven ion traps and guides , 2014 .

[18]  D. Austin,et al.  Simulations of ion motion in toroidal ion traps , 2014 .

[19]  Liang Wang,et al.  Resonance Activation and Collision-Induced-Dissociation of Ions Using Rectangular Wave Dipolar Potentials in a Digital Ion Trap Mass Spectrometer , 2014, Journal of The American Society for Mass Spectrometry.

[20]  F. V. van Amerom,et al.  High-speed digital frequency scanning ion trap mass spectrometry. , 2013, Analytical chemistry.

[21]  L. Schweikhard,et al.  The stability diagram of the digital ion trap , 2013 .

[22]  D. Austin,et al.  A simplified toroidal ion trap mass analyzer , 2012 .

[23]  D. Ming,et al.  The Sample Analysis at Mars Investigation and Instrument Suite , 2012 .

[24]  Aaron R Hawkins,et al.  Coaxial ion trap mass spectrometer: concentric toroidal and quadrupolar trapping regions. , 2011, Analytical chemistry.

[25]  B. McCullough,et al.  Digital asymmetric waveform isolation (DAWI) in a digital linear ion trap , 2010, Journal of the American Society for Mass Spectrometry.

[26]  Zheng Ouyang,et al.  Miniature mass spectrometers. , 2009, Annual review of analytical chemistry.

[27]  Zheng Ouyang,et al.  Handheld miniature ion trap mass spectrometers. , 2009, Analytical chemistry.

[28]  L. Becker,et al.  Development of a low power, high mass range mass spectrometer for Mars surface analysis , 2008 .

[29]  Jesse A. Contreras,et al.  Hand-portable gas chromatograph-toroidal ion trap mass spectrometer (GC-TMS) for detection of hazardous compounds , 2008, Journal of the American Society for Mass Spectrometry.

[30]  P. Traldi,et al.  Mapping the stability diagram of a digital ion trap (DIT) mass spectrometer varying the duty cycle of the trapping rectangular waveform , 2008, Journal of the American Society for Mass Spectrometry.

[31]  K. Biemann On the ability of the Viking gas chromatograph–mass spectrometer to detect organic matter , 2007, Proceedings of the National Academy of Sciences.

[32]  Aaron R Hawkins,et al.  Halo ion trap mass spectrometer. , 2007, Analytical chemistry.

[33]  R. Cooks,et al.  Co-occurrence of boundary and resonance ejection in a multiplexed rectilinear ion trap mass spectrometer , 2006, Journal of the American Society for Mass Spectrometry.

[34]  Zheng Ouyang,et al.  Rectilinear ion trap: concepts, calculations, and analytical performance of a new mass analyzer. , 2004, Analytical chemistry.

[35]  Sumio Kumashiro,et al.  A digital ion trap mass spectrometer coupled with atmospheric pressure ion sources. , 2004, Journal of mass spectrometry : JMS.

[36]  L. Ding,et al.  A simulation study of the digital ion trap mass spectrometer , 2002 .

[37]  Zheng Ouyang,et al.  Miniature cylindrical ion trap mass spectrometer. , 2002, Analytical chemistry.

[38]  M. Senko,et al.  A two-dimensional quadrupole ion trap mass spectrometer , 2002, Journal of the American Society for Mass Spectrometry.

[39]  James W. Hager,et al.  A new linear ion trap mass spectrometer , 2002 .

[40]  S. Lammert,et al.  Design, optimization and initial performance of a toroidal rf ion trap mass spectrometer , 2001 .

[41]  R. Cooks,et al.  Miniature mass analyzers , 2000, Journal of mass spectrometry : JMS.

[42]  R. Cooks,et al.  A parallel miniature cylindrical ion trap array , 2000, Analytical chemistry.

[43]  H. Fales,et al.  Calibration of mass ranges up to m/z 10,000 in electrospray mass spectrometers , 1999 .

[44]  J. Michael Ramsey,et al.  Micro ion trap mass spectrometry , 1999 .

[45]  R. Cooks,et al.  A miniature cylindrical quadrupole ion trap:  simulation and experiment. , 1998, Analytical Chemistry.

[46]  H. Walther,et al.  Ion/molecule reactions, mass spectrometry and optical spectroscopy in a linear ion trap , 1998 .

[47]  J. Long Congress begins work on energy bill , 1991 .

[48]  W. Paul,et al.  Das elektrische Massenfilter als Massenspektrometer und Isotopentrenner , 1958 .

[49]  W. Feit Herrn Professor Dr. Walter Noddack zum 60. Geburtstag , 1953 .