Two-Dimensional CdSe-Based Nanoplatelets: Their Heterostructures, Doping, Photophysical Properties, and Applications

In the past decade, colloidal quantum wells, also known as 2-D semiconductor nanoplatelets (NPLs), have been added to the colloidal nanocrystal (NC) family. Through the unique control of the thickness with monolayer precision, these novel materials exhibit strong 1-D quantum confinement that offers unique optical properties along with the possibility of fabricating advanced heterostructures, which are not possible with other quantum-confined nanostructures. The 2-D CdX (X = Se, S)-based NPLs provide high color purities, fast fluorescence lifetimes, and large exciton binding energies. This review covers the latest developments in the successful utilization of these flat NCs in different nanophotonic device applications. The synthesis of the advanced heterostructures of flat 2-D NCs (e.g., core–shell, core–crown, and core–crown–shell) has matured very rapidly, and new exciting optical and electronic applications are emerging. Doping of these atomically thin NCs also offers new possibilities for their utilization in different solar light harvesting, magnetic, electronic, and lasing applications. This review also includes the recent advancements in the understanding of their unique optical properties that are of utmost importance for their practical implementation in light-emitting devices and lasers. Finally, we present a future perspective on their successful utilization in different nanophotonic applications.

[1]  Savas Delikanli,et al.  Type-II Colloidal Quantum Wells: CdSe/CdTe Core/Crown Heteronanoplatelets , 2015 .

[2]  Louis E. Brus,et al.  A simple model for the ionization potential, electron affinity, and aqueous redox potentials of small semiconductor crystallites , 1983 .

[3]  V. Bulović,et al.  Emergence of colloidal quantum-dot light-emitting technologies , 2012, Nature Photonics.

[4]  Dmitri V Talapin,et al.  Low-threshold stimulated emission using colloidal quantum wells. , 2013, Nano letters.

[5]  Paul P. C. Verbunt,et al.  Thirty Years of Luminescent Solar Concentrator Research: Solar Energy for the Built Environment , 2012 .

[6]  Jung Ho Yu,et al.  Low-temperature solution-phase synthesis of quantum well structured CdSe nanoribbons. , 2006, Journal of the American Chemical Society.

[7]  Moungi G. Bawendi,et al.  From amplified spontaneous emission to microring lasing using nanocrystal quantum dot solids , 2002 .

[8]  Alexander N. Cartwright,et al.  Time-resolved photoluminescence study of CdSe/CdMnS/CdS core/multi-shell nanoplatelets , 2016 .

[9]  Zeger Hens,et al.  The Impact of Core/Shell Sizes on the Optical Gain Characteristics of CdSe/CdS Quantum Dots. , 2018, ACS nano.

[10]  D. Sarma,et al.  Ultranarrow and widely tunable Mn2+-Induced photoluminescence from single Mn-doped nanocrystals of ZnS-CdS alloys. , 2013, Physical review letters.

[11]  Whi Dong Kim,et al.  Pushing the Efficiency Envelope for Semiconductor Nanocrystal-Based Electroluminescence Devices Using Anisotropic Nanocrystals , 2019, Chemistry of Materials.

[12]  N. Pradhan,et al.  Correlation of Dopant States and Host Bandgap in Dual-Doped Semiconductor Nanocrystals , 2011 .

[13]  Sander F. Wuister,et al.  Luminescence of nanocrystalline ZnSe:Cu , 2001 .

[14]  Hilmi Volkan Demir,et al.  Giant Modal Gain Coefficients in Colloidal II-VI Nanoplatelets. , 2018, Nano letters.

[15]  N. Pradhan,et al.  Tuning the emission colors of semiconductor nanocrystals beyond their bandgap tunability: all in the dope. , 2013, Small.

[16]  Benoit Dubertret,et al.  Spectroscopy of colloidal semiconductor core/shell nanoplatelets with high quantum yield. , 2013, Nano letters.

[17]  Peter D Dahlberg,et al.  Red, Yellow, Green, and Blue Amplified Spontaneous Emission and Lasing Using Colloidal CdSe Nanoplatelets. , 2015, ACS nano.

[18]  J. Xue,et al.  Super color purity green quantum dot light-emitting diodes fabricated by using CdSe/CdS nanoplatelets. , 2016, Nanoscale.

[19]  Hilmi Volkan Demir,et al.  CdSe/CdSe1–xTex Core/Crown Heteronanoplatelets: Tuning the Excitonic Properties without Changing the Thickness , 2017 .

[20]  Nima Taghipour,et al.  Highly Stable Multicrown Heterostructures of Type-II Nanoplatelets for Ultralow Threshold Optical Gain , 2019, Chemistry of Materials.

[21]  V. Bulović,et al.  Colloidal quantum dot light-emitting devices , 2010, Nano reviews.

[22]  Arto Nurmikko,et al.  Red, green and blue lasing enabled by single-exciton gain in colloidal quantum dot films. , 2012, Nature nanotechnology.

[23]  S. Gambhir,et al.  Quantum Dots for Live Cells, in Vivo Imaging, and Diagnostics , 2005, Science.

[24]  Hilmi Volkan Demir,et al.  Platelet‐in‐Box Colloidal Quantum Wells: CdSe/CdS@CdS Core/Crown@Shell Heteronanoplatelets , 2016 .

[25]  Raffaello Mazzaro,et al.  The Renaissance of Luminescent Solar Concentrators: The Role of Inorganic Nanomaterials , 2018, Advanced Energy Materials.

[26]  D. Gamelin,et al.  Picosecond Quantum Cutting Generates Photoluminescence Quantum Yields Over 100% in Ytterbium-Doped CsPbCl3 Nanocrystals. , 2018, Nano letters.

[27]  S. Erwin,et al.  An intrinsic growth instability in isotropic materials leads to quasi-two-dimensional nanoplatelets , 2017, Nature materials.

[28]  Stephan W Koch,et al.  Microscopic theory of gain for an InGaN/AlGaN quantum well laser , 1997 .

[29]  B. Dubertret,et al.  Continuous transition from 3D to 1D confinement observed during the formation of CdSe nanoplatelets. , 2011, Journal of the American Chemical Society.

[30]  Vijay Kumar Sharma,et al.  Ultralow Threshold One-Photon- and Two-Photon-Pumped Optical Gain Media of Blue-Emitting Colloidal Quantum Dot Films. , 2014, The journal of physical chemistry letters.

[31]  Dmitri V Talapin,et al.  Seeded growth of highly luminescent CdSe/CdS nanoheterostructures with rod and tetrapod morphologies. , 2007, Nano letters.

[32]  Benoit Dubertret,et al.  Core/shell colloidal semiconductor nanoplatelets. , 2012, Journal of the American Chemical Society.

[33]  Savas Delikanli,et al.  Experimental Determination of the Absorption Cross-Section and Molar Extinction Coefficient of Colloidal CdSe Nanoplatelets , 2015 .

[34]  Benoit Dubertret,et al.  Self-assembly of CdSe nanoplatelets into giant micrometer-scale needles emitting polarized light. , 2014, Nano letters.

[35]  Weidong Yang,et al.  Shape control of CdSe nanocrystals , 2000, Nature.

[36]  B. Dubertret,et al.  Colloidal nanoplatelets with two-dimensional electronic structure. , 2011, Nature materials.

[37]  Matthew Pelton,et al.  Carrier Dynamics, Optical Gain, and Lasing with Colloidal Quantum Wells , 2018 .

[38]  Vincent Loriette,et al.  Spectroscopy of single CdSe nanoplatelets. , 2012, ACS nano.

[39]  Zeger Hens,et al.  Tunable and Efficient Red to Near-Infrared Photoluminescence by Synergistic Exploitation of Core and Surface Silver Doping of CdSe Nanoplatelets , 2019, Chemistry of Materials.

[40]  Benoit Dubertret,et al.  Quasi‐2D Colloidal Semiconductor Nanoplatelets for Narrow Electroluminescence , 2014 .

[41]  K. Bohnert,et al.  Gain and Reflection Spectroscopy and the Present Understanding of the Electron–Hole Plasma in II–VI Compounds , 1980 .

[42]  David J. Norris,et al.  High-temperature growth of thick-shell CdSe/CdS core/shell nanoplatelets. , 2017, Chemical communications.

[43]  Victor I Klimov,et al.  Effect of Auger Recombination on Lasing in Heterostructured Quantum Dots with Engineered Core/Shell Interfaces. , 2015, Nano letters.

[44]  B. Dubertret,et al.  Towards non-blinking colloidal quantum dots. , 2008, Nature materials.

[45]  M. Bawendi,et al.  Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites , 1993 .

[46]  Sandrine Ithurria,et al.  Carrier cooling in colloidal quantum wells. , 2012, Nano letters.

[47]  Dalip Singh Mehta,et al.  A review on the light extraction techniques in organic electroluminescent devices , 2009 .

[48]  Savas Delikanli,et al.  Amplified spontaneous emission and lasing in colloidal nanoplatelets. , 2014, ACS nano.

[49]  Uri Banin,et al.  Lasing from CdSe/ZnS Quantum Rods in a Cylindrical Microcavity , 2003 .

[50]  Alexei G. Vitukhnovsky,et al.  Electroluminescence from colloidal semiconductor CdSe nanoplatelets in hybrid organic-inorganic light emitting diode , 2015 .

[51]  Oleksandr Voznyy,et al.  Perovskite Thin Films via Atomic Layer Deposition , 2015, Advanced materials.

[52]  James R. McBride,et al.  Near‐Unity Emitting Copper‐Doped Colloidal Semiconductor Quantum Wells for Luminescent Solar Concentrators , 2017, Advanced materials.

[53]  Benoit Dubertret,et al.  Quasi 2D colloidal CdSe platelets with thicknesses controlled at the atomic level. , 2008, Journal of the American Chemical Society.

[54]  Cuong Dang,et al.  Ultrahigh-efficiency aqueous flat nanocrystals of CdSe/CdS@Cd1-xZnxS colloidal core/crown@alloyed-shell quantum wells. , 2018, Nanoscale.

[55]  Taeghwan Hyeon,et al.  Designed Assembly and Integration of Colloidal Nanocrystals for Device Applications , 2016, Advanced materials.

[56]  Liberato Manna,et al.  Exciton relaxation processes in colloidal core/shell ZnSe/ZnS nanocrystals , 2003 .

[57]  Benoit Dubertret,et al.  Recombination dynamics of band edge excitons in quasi-two-dimensional CdSe nanoplatelets. , 2014, Nano letters.

[58]  N. Pradhan,et al.  Doping Cu in semiconductor nanocrystals: some old and some new physical insights. , 2011, Journal of the American Chemical Society.

[59]  A. Alivisatos,et al.  Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer , 1994, Nature.

[60]  Benoit Dubertret,et al.  Electrolyte-gated field effect transistor to probe the surface defects and morphology in films of thick CdSe colloidal nanoplatelets. , 2014, ACS nano.

[61]  Rui Chen,et al.  Stimulated Emission and Lasing from CdSe/CdS/ZnS Core‐Multi‐Shell Quantum Dots by Simultaneous Three‐Photon Absorption , 2014, Advanced materials.

[62]  Dmitri V Talapin,et al.  Nonmonotonic Dependence of Auger Recombination Rate on Shell Thickness for CdSe/CdS Core/Shell Nanoplatelets. , 2017, Nano letters.

[63]  Manish Mittal,et al.  Fast and quick degradation properties of doped and capped ZnO nanoparticles under UV–Visible light radiations , 2016 .

[64]  Ulrike Woggon,et al.  Linear Absorption in CdSe Nanoplates: Thickness and Lateral Size Dependency of the Intrinsic Absorption , 2015 .

[65]  Cuong Dang,et al.  Low-threshold lasing from colloidal CdSe/CdSeTe core/alloyed-crown type-II heteronanoplatelets. , 2018, Nanoscale.

[66]  Francesco Meinardi,et al.  Luminescent solar concentrators for building-integrated photovoltaics , 2017 .

[67]  Christophe Delerue,et al.  Doping as a Strategy to Tune Color of 2D Colloidal Nanoplatelets. , 2019, ACS applied materials & interfaces.

[68]  Dimitri Geskus,et al.  Giant Optical Gain in a Rare‐Earth‐Ion‐Doped Microstructure , 2012, Advanced materials.

[69]  Alberto Vomiero,et al.  Dual emission and optical gain in PbS/CdS nanocrystals: Role of shell volume and of core/shell interface , 2017 .

[70]  James R. McBride,et al.  Understanding the Journey of Dopant Copper Ions in Atomically Flat Colloidal Nanocrystals of CdSe Nanoplatelets Using Partial Cation Exchange Reactions , 2018 .

[71]  V. Bulović,et al.  Quantum dot light-emitting devices with electroluminescence tunable over the entire visible spectrum. , 2009, Nano letters.

[72]  Chunhai Fan,et al.  Microwave Synthesis of Water‐Dispersed CdTe/CdS/ZnS Core‐Shell‐Shell Quantum Dots with Excellent Photostability and Biocompatibility , 2008 .

[73]  R. F. Leheny,et al.  Stimulated Emission and Laser Action in Gallium Nitride , 1971 .

[74]  Torben Kodanek,et al.  Phase transfer of 1- and 2-dimensional Cd-based nanocrystals. , 2015, Nanoscale.

[75]  A. Ekimov,et al.  Quantum Size Effect in Three-Dimensional Microscopic Semiconductor Crystals , 1981, JETP Letters.

[76]  Tae-Woo Lee,et al.  Flexible organic light-emitting diodes for solid-state lighting , 2015 .

[77]  Peiyao Zhang,et al.  Mn(2+)-Doped CdSe/CdS Core/Multishell Colloidal Quantum Wells Enabling Tunable Carrier-Dopant Exchange Interactions. , 2015, ACS nano.

[78]  Christine K. Luscombe,et al.  Quantum-cutting Yb3+-doped perovskite nanocrystals for monolithic bilayer luminescent solar concentrators , 2019, Journal of Materials Chemistry A.

[79]  Oleksandr Voznyy,et al.  Colloidal CdSe(1-x)S(x) Nanoplatelets with Narrow and Continuously-Tunable Electroluminescence. , 2015, Nano letters.

[80]  Hilmi Volkan Demir,et al.  Orientation-Controlled Nonradiative Energy Transfer to Colloidal Nanoplatelets: Engineering Dipole Orientation Factor. , 2019, Nano letters.

[81]  Sandrine Ithurria,et al.  Colloidal atomic layer deposition (c-ALD) using self-limiting reactions at nanocrystal surface coupled to phase transfer between polar and nonpolar media. , 2012, Journal of the American Chemical Society.

[82]  Jagjit Nanda,et al.  Single-exciton optical gain in semiconductor nanocrystals , 2007, Nature.

[83]  D. Gamelin,et al.  Nanocrystals for luminescent solar concentrators. , 2015, Nano letters.

[84]  Benoit Dubertret,et al.  Two-dimensional colloidal metal chalcogenides semiconductors: synthesis, spectroscopy, and applications. , 2015, Accounts of chemical research.

[85]  Clément Livache,et al.  Electronic structure robustness and design rules for 2D colloidal heterostructures , 2018 .

[86]  J. Vela,et al.  "Giant" multishell CdSe nanocrystal quantum dots with suppressed blinking. , 2008, Journal of the American Chemical Society.

[87]  Edo Waks,et al.  A room temperature continuous-wave nanolaser using colloidal quantum wells , 2017, Nature Communications.

[88]  Mikhail Artemyev,et al.  CdSe-CdS nanoheteroplatelets with efficient photoexcitation of central CdSe region through epitaxially grown CdS wings. , 2013, Journal of the American Chemical Society.

[89]  Jaehoon Lim,et al.  Spectroscopic and Device Aspects of Nanocrystal Quantum Dots. , 2016, Chemical reviews.

[90]  Ou Chen,et al.  Compact high-quality CdSe-CdS core-shell nanocrystals with narrow emission linewidths and suppressed blinking. , 2013, Nature materials.

[91]  Abhijit Hazarika,et al.  Rainbow Emission from an Atomic Transition in Doped Quantum Dots. , 2014, The journal of physical chemistry letters.

[92]  Daniel R. Gamelin,et al.  One-Pot Synthesis of Monodisperse Colloidal Copper-Doped CdSe Nanocrystals Mediated by Ligand–Copper Interactions , 2016 .

[93]  Roberto Cingolani,et al.  Continuous-wave biexciton lasing at room temperature using solution-processed quantum wells. , 2014, Nature nanotechnology.

[94]  Hilmi Volkan Demir,et al.  Alloyed Heterostructures of CdSexS1–x Nanoplatelets with Highly Tunable Optical Gain Performance , 2017 .

[95]  P. Deotare,et al.  Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide , 2010, 1002.1319.

[96]  Hilmi Volkan Demir,et al.  Highly Stable, Near-Unity Efficiency Atomically Flat Semiconductor Nanocrystals of CdSe/ZnS Hetero-Nanoplatelets Enabled by ZnS-Shell Hot-Injection Growth. , 2019, Small.

[97]  Daniel R. Gamelin,et al.  Electronic doping and redox-potential tuning in colloidal semiconductor nanocrystals. , 2015, Accounts of chemical research.

[98]  Benoit Dubertret,et al.  Probing the Fluorescence Dipoles of Single Cubic CdSe/CdS Nanoplatelets with Vertical or Horizontal Orientations , 2018 .

[99]  Ramanjot Kaur,et al.  Synthesis of fluorescent core-shell nanomaterials and strategies to generate white light , 2015 .

[100]  Savas Delikanli,et al.  sp-d Exchange Interactions in Wave Function Engineered Colloidal CdSe/Mn:CdS Hetero-Nanoplatelets. , 2018, Nano letters.

[101]  Zhiya Dang,et al.  Synthesis of Air-Stable CdSe/ZnS Core–Shell Nanoplatelets with Tunable Emission Wavelength , 2017 .

[102]  Vijay Kumar Sharma,et al.  Ultrathin Highly Luminescent Two‐Monolayer Colloidal CdSe Nanoplatelets , 2019, Advanced Functional Materials.

[103]  Savas Delikanli,et al.  Nanocrystal light-emitting diodes based on type II nanoplatelets , 2018 .

[104]  Mark Hyunpong Jhon,et al.  Ultralow-threshold multiphoton-pumped lasing from colloidal nanoplatelets in solution , 2015, Nature Communications.

[105]  P. Guyot-Sionnest,et al.  Synthesis and Characterization of Strongly Luminescing ZnS-Capped CdSe Nanocrystals , 1996 .

[106]  O. P. Pandey,et al.  Excitation induced tunable emission in biocompatible chitosan capped ZnS nanophosphors , 2010 .

[107]  Joshua Wright,et al.  Implications of orbital hybridization on the electronic properties of doped quantum dots: the case of Cu:CdSe. , 2016, Nanoscale.

[108]  A. Alivisatos,et al.  Improved efficiencies in light emitting diodes made with CdSe(CdS) core/shell type nanocrystals and a semiconducting polymer , 1997 .

[109]  Benoit Dubertret,et al.  Type-II CdSe/CdTe core/crown semiconductor nanoplatelets. , 2014, Journal of the American Chemical Society.

[110]  Ranjani Viswanatha,et al.  Study of surface and bulk electronic structure of II-VI semiconductor nanocrystals using Cu as a nanosensor. , 2012, ACS nano.

[111]  Joshua Wright,et al.  Effects of dopants on the band structure of quantum dots: A theoretical and experimental study , 2013 .

[112]  Richard D. Schaller,et al.  Violet-to-Blue Gain and Lasing from Colloidal CdS Nanoplatelets: Low-Threshold Stimulated Emission Despite Low Photoluminescence Quantum Yield , 2017 .

[113]  Ranjani Viswanatha,et al.  Tunable Infrared Phosphors Using Cu Doping in Semiconductor Nanocrystals: Surface Electronic Structure Evaluation. , 2013, The journal of physical chemistry letters.

[114]  Hilmi Volkan Demir,et al.  Stacking in colloidal nanoplatelets: tuning excitonic properties. , 2014, ACS nano.

[115]  Jian Yuan,et al.  Emergence of Nanoplatelet Light-Emitting Diodes , 2018, Materials.

[116]  Jung Ho Yu,et al.  Dimension-controlled synthesis of CdS nanocrystals: from 0D quantum dots to 2D nanoplates. , 2012, Small.

[117]  Manpreet Kaur,et al.  Cd-free Cu-doped ZnInS/ZnS Core/Shell Nanocrystals: Controlled Synthesis And Photophysical Properties , 2018, Nanoscale Research Letters.

[118]  Tianquan Lian,et al.  High-Efficiency Optical Gain in Type-II Semiconductor Nanocrystals of Alloyed Colloidal Quantum Wells. , 2017, The journal of physical chemistry letters.

[119]  Dae-Hyeong Kim,et al.  Flexible quantum dot light-emitting diodes for next-generation displays , 2018, npj Flexible Electronics.

[120]  Shih-Yuan Lu,et al.  Polymer nanocomposite containing CdS-ZnS core-shell particles: Optical properties and morphology , 2003 .

[121]  Paul Mulvaney,et al.  Electronic Structure Engineering in ZnSe/CdS Type-II Nanoparticles by Interface Alloying , 2014 .

[122]  Savas Delikanli,et al.  Continuously Tunable Emission in Inverted Type‐I CdS/CdSe Core/Crown Semiconductor Nanoplatelets , 2015 .

[123]  Benoit Dubertret,et al.  Flat Colloidal Semiconductor Nanoplatelets , 2013 .

[124]  Benoit Dubertret,et al.  Efficient Solution-Processed Nanoplatelet-Based Light-Emitting Diodes with High Operational Stability in Air. , 2018, Nano letters.

[125]  Mirko Prato,et al.  Chloride-Induced Thickness Control in CdSe Nanoplatelets , 2018, Nano letters.

[126]  Yuchen Liu,et al.  Photostability and Photodegradation Processes in Colloidal CsPbI3 Perovskite Quantum Dots. , 2018, ACS applied materials & interfaces.

[127]  Jung Ho Yu,et al.  Large-scale soft colloidal template synthesis of 1.4 nm thick CdSe nanosheets. , 2009, Angewandte Chemie.

[128]  Piernicola Spinicelli,et al.  Efficient exciton concentrators built from colloidal core/crown CdSe/CdS semiconductor nanoplatelets. , 2014, Nano letters.

[129]  Yizheng Jin,et al.  Solution-processed, high-performance light-emitting diodes based on quantum dots , 2014, Nature.

[130]  Dan Oron,et al.  Colloidal Mercury-Doped CdSe Nanoplatelets with Dual Fluorescence , 2019, Chemistry of Materials.

[131]  Paul Mulvaney,et al.  Synthesis of Highly Luminescent and Photo-Stable, Graded Shell CdSe/CdxZn1–xS Nanoparticles by In Situ Alloying , 2013 .