A posteriori error estimation for finite element solutions of Helmholtz’ equation. part I: the quality of local indicators and estimators

[1]  J. Z. Zhu,et al.  The superconvergent patch recovery and a posteriori error estimates. Part 1: The recovery technique , 1992 .

[2]  A. Majda,et al.  Absorbing boundary conditions for the numerical simulation of waves , 1977 .

[3]  T. Hughes,et al.  Finite element methods for the Helmholtz equation in an exterior domain: model problems , 1991 .

[4]  Ivo Babuška,et al.  A Posteriori Error Analysis of Finite Element Solutions for One-Dimensional Problems , 1981 .

[5]  Ivo Babuška,et al.  Pollution-error in the h -version of the finite-element method and the local quality of a-posteriori error estimators , 1994 .

[6]  A. Bayliss,et al.  On accuracy conditions for the numerical computation of waves , 1985 .

[7]  Ivo Babuška,et al.  A Generalized Finite Element Method for solving the Helmholtz equation in two dimensions with minimal pollution , 1995 .

[8]  Ivo Babuška,et al.  A posteriori estimation and adaptive control of the pollution error in the h‐version of the finite element method , 1995 .

[9]  G. Strang,et al.  An Analysis of the Finite Element Method , 1974 .

[10]  J. Z. Zhu,et al.  The superconvergent patch recovery and a posteriori error estimates. Part 2: Error estimates and adaptivity , 1992 .

[11]  Leszek Demkowicz,et al.  Recent progress on application of hp-adaptive BE/FE methods to elastic scattering , 1994 .

[12]  Peter Monk,et al.  An analysis of the coupling of finite-element and Nyström methods in acoustic scattering , 1994 .

[13]  I. Babuska,et al.  Finite element solution of the Helmholtz equation with high wave number Part I: The h-version of the FEM☆ , 1995 .

[14]  J. Oden,et al.  Toward a universal h - p adaptive finite element strategy: Part 2 , 1989 .

[15]  I. Babuska,et al.  Pollution Error in the h-Version of the Finite Element Method and the Local Quality of the Recovered Derivatives. , 1997 .

[16]  Thomas J. R. Hughes,et al.  Galerkin/least-squares finite element methods for the reduced wave equation with non-reflecting boundary conditions in unbounded domains , 1992 .

[17]  I. Babuska,et al.  Dispersion analysis and error estimation of Galerkin finite element methods for the Helmholtz equation , 1995 .

[18]  I. Babuska,et al.  A model study of the quality of a posteriori error estimators for linear elliptic problems. Error estimation in the interior of patchwise uniform grids of triangles , 1994 .

[19]  Ivo Babuška,et al.  Validation of A-Posteriori Error Estimators by Numerical Approach , 1994 .

[20]  O. C. Zienkiewicz,et al.  The superconvergent patch recovery (SPR) and adaptive finite element refinement , 1992 .