A posteriori error estimation for finite element solutions of Helmholtz’ equation. part I: the quality of local indicators and estimators
暂无分享,去创建一个
Ivo Babuška | T. Strouboulis | I. Babuska | T. Strouboulis | S. Gangaraj | F. Ihlenburg | S. K. Gangaraj | F. Ihlenburg | Frank Ihlenburg
[1] J. Z. Zhu,et al. The superconvergent patch recovery and a posteriori error estimates. Part 1: The recovery technique , 1992 .
[2] A. Majda,et al. Absorbing boundary conditions for the numerical simulation of waves , 1977 .
[3] T. Hughes,et al. Finite element methods for the Helmholtz equation in an exterior domain: model problems , 1991 .
[4] Ivo Babuška,et al. A Posteriori Error Analysis of Finite Element Solutions for One-Dimensional Problems , 1981 .
[5] Ivo Babuška,et al. Pollution-error in the h -version of the finite-element method and the local quality of a-posteriori error estimators , 1994 .
[6] A. Bayliss,et al. On accuracy conditions for the numerical computation of waves , 1985 .
[7] Ivo Babuška,et al. A Generalized Finite Element Method for solving the Helmholtz equation in two dimensions with minimal pollution , 1995 .
[8] Ivo Babuška,et al. A posteriori estimation and adaptive control of the pollution error in the h‐version of the finite element method , 1995 .
[9] G. Strang,et al. An Analysis of the Finite Element Method , 1974 .
[10] J. Z. Zhu,et al. The superconvergent patch recovery and a posteriori error estimates. Part 2: Error estimates and adaptivity , 1992 .
[11] Leszek Demkowicz,et al. Recent progress on application of hp-adaptive BE/FE methods to elastic scattering , 1994 .
[12] Peter Monk,et al. An analysis of the coupling of finite-element and Nyström methods in acoustic scattering , 1994 .
[13] I. Babuska,et al. Finite element solution of the Helmholtz equation with high wave number Part I: The h-version of the FEM☆ , 1995 .
[14] J. Oden,et al. Toward a universal h - p adaptive finite element strategy: Part 2 , 1989 .
[15] I. Babuska,et al. Pollution Error in the h-Version of the Finite Element Method and the Local Quality of the Recovered Derivatives. , 1997 .
[16] Thomas J. R. Hughes,et al. Galerkin/least-squares finite element methods for the reduced wave equation with non-reflecting boundary conditions in unbounded domains , 1992 .
[17] I. Babuska,et al. Dispersion analysis and error estimation of Galerkin finite element methods for the Helmholtz equation , 1995 .
[18] I. Babuska,et al. A model study of the quality of a posteriori error estimators for linear elliptic problems. Error estimation in the interior of patchwise uniform grids of triangles , 1994 .
[19] Ivo Babuška,et al. Validation of A-Posteriori Error Estimators by Numerical Approach , 1994 .
[20] O. C. Zienkiewicz,et al. The superconvergent patch recovery (SPR) and adaptive finite element refinement , 1992 .