Global sea-level budget 1993–present

Abstract. Global mean sea level is an integral of changes occurring in the climate system in response to unforced climate variability as well as natural and anthropogenic forcing factors. Its temporal evolution allows changes (e.g., acceleration) to be detected in one or more components. Study of the sea-level budget provides constraints on missing or poorly known contributions, such as the unsurveyed deep ocean or the still uncertain land water component. In the context of the World Climate Research Programme Grand Challenge entitled Regional Sea Level and Coastal Impacts, an international effort involving the sea-level community worldwide has been recently initiated with the objective of assessing the various datasets used to estimate components of the sea-level budget during the altimetry era (1993 to present). These datasets are based on the combination of a broad range of space-based and in situ observations, model estimates, and algorithms. Evaluating their quality, quantifying uncertainties and identifying sources of discrepancies between component estimates is extremely useful for various applications in climate research. This effort involves several tens of scientists from about 50 research teams/institutions worldwide (www.wcrp-climate.org/grand-challenges/gc-sea-level, last access: 22 August 2018). The results presented in this paper are a synthesis of the first assessment performed during 2017–2018. We present estimates of the altimetry-based global mean sea level (average rate of 3.1 ± 0.3 mm yr−1 and acceleration of 0.1 mm yr−2 over 1993–present), as well as of the different components of the sea-level budget (http://doi.org/10.17882/54854, last access: 22 August 2018). We further examine closure of the sea-level budget, comparing the observed global mean sea level with the sum of components. Ocean thermal expansion, glaciers, Greenland and Antarctica contribute 42 %, 21 %, 15 % and 8 % to the global mean sea level over the 1993–present period. We also study the sea-level budget over 2005–present, using GRACE-based ocean mass estimates instead of the sum of individual mass components. Our results demonstrate that the global mean sea level can be closed to within 0.3 mm yr−1 (1σ). Substantial uncertainty remains for the land water storage component, as shown when examining individual mass contributions to sea level.

Eric Rignot | Petra Döll | Christopher J. Merchant | Lijing Cheng | Timothy P. Boyer | Riccardo E. M. Riva | Vincent Humphrey | Scott B. Luthcke | Jérôme Benveniste | Jürgen Kusche | Ingo Sasgen | C. K. Shum | Anny Cazenave | Guy Wöppelmann | Karina von Schuckmann | Gary T. Mitchum | Sonia I. Seneviratne | Frank Paul | Roelof Rietbroek | James S. Famiglietti | Detlef Stammer | Gregory C. Johnson | Jonathan L. Bamber | Felix W. Landerer | Christopher Watson | Louise Sandberg Sørensen | Andreas Groh | Martin Horwath | Bert Wouters | Don P. Chambers | M. Merrifield | Bryant D. Loomis | Isabella Velicogna | Yoshihide Wada | Kurt Lambeck | Ben Marzeion | David N. Wiese | Benjamin D. Hamlington | Dean Roemmich | John A. Church | Luciana Fenoglio-Marc | Svetlana Jevrejeva | J. Graham Cogley | Alejandro Blazquez | Susan Wijffels | Nicolas Kolodziejczyk | Didier P. Monselesan | Giorgio Spada | Masayoshi Ishii | René Forsberg | Nicolas Champollion | Jianli Chen | John T. Reager | Valentina Roberta Barletta | Rui M. Ponte | Hindumathi Palanisamy | William Llovel | Magdalena A. Balmaseda | Anna E. Hogg | Marta Marcos | Laurent Longuevergne | Catia M. Domingues | B. D. Beckley | Ulrike Falk | Yara Mohajerani | Adrian Jaeggi | A. Cazenave | K. Lambeck | S. Seneviratne | D. Chambers | B. Chao | I. Sasgen | J. Kusche | R. Rietbroek | C. Shum | C. Domingues | S. Jevrejeva | F. Landerer | G. Mitchum | C. Watson | M. Balmaseda | P. Döll | E. Berthier | T. Boyer | J. Famiglietti | D. Stammer | Yiguo Wang | J. Church | G. Johnson | Jianli Chen | B. Meyssignac | M. Ablain | K. Schuckmann | J. Cogley | A. Gardner | F. Paul | R. Forsberg | L. Longuevergne | B. Legrésy | M. Ishii | J. Reager | C. Merchant | J. Benveniste | Y. Wada | R. Ponte | J. Bamber | D. Roemmich | R. Westaway | M. Marcos | A. Blazquez | L. Cheng | B. Hamlington | E. Leuliette | M. Merrifield | D. Monselesan | S. Purkey | S. Wijffels | A. Jaeggi | E. Rignot | L. Fenoglio-Marc | B. Pérez | G. Wöppelmann | G. Spada | V. Barletta | R. Riva | L. Husson | B. Wouters | G. Milne | S. Luthcke | I. Velicogna | N. Champollion | U. Falk | B. Beckley | A. Groh | E. Schram | M. Monier | A. Hogg | V. Humphrey | B. Marzeion | D. Wiese | C. Piecuch | N. Kolodziejczyk | B. Loomis | M. Horwath | Etienne Berthier | Benoit Meyssignac | Alex S. Gardner | Glenn A. Milne | Michael Ablain | Benoit Legresy | L. Sørensen | Christopher G. Piecuch | Sarah G. Purkey | Yiguo Wang | Yara Mohajerani | Eric Wesley Leuliette | Richard M. Westaway | W. Llovel | Denise Cáceres | S. Chuter | Soenke Dangendorf | D. Desbruyères | Gaia Galassi | P. Leclercq | S. Nerem | H. Palanisamy | R. V. D. Wal | Laurent Husson | Denise Cáceres | Ben Chao | Stephen Chuter | Soenke Dangendorf | Damien Desbruyères | Gaia Galassi | P. W. Leclercq | Maeva Monier | Steve Nerem | B. Pérez | E.J.O. Schram | Roderic van de Wal | G. Galassi | S. Dangendorf | Lijing Cheng

[1]  J. Bamber,et al.  Corrigendum: The land ice contribution to sea level during the satellite era (2018 Environ. Res. Lett. 13 063008) , 2018, Environmental Research Letters.

[2]  Eric Rignot,et al.  Mass balance of the Antarctic Ice Sheet from 1992 to 2017 , 2018, Nature.

[3]  G. Kaser,et al.  Limited influence of climate change mitigation on short-term glacier mass loss , 2018, Nature Climate Change.

[4]  C. Wild,et al.  The Open Global Glacier Model (OGGM) v1.0 , 2018 .

[5]  D Masters,et al.  Climate-change–driven accelerated sea-level rise detected in the altimeter era , 2018, Proceedings of the National Academy of Sciences.

[6]  R. Reedy,et al.  Global models underestimate large decadal declining and rising water storage trends relative to GRACE satellite data , 2018, Proceedings of the National Academy of Sciences.

[7]  J. Bamber,et al.  The land ice contribution to sea level during the satellite era , 2017, Environmental Research Letters.

[8]  Atul K. Jain,et al.  Global Carbon Budget 2018 , 2014, Earth System Science Data.

[9]  Global sea-level budget 1993-present Group , WCRP Global Sea Level Budget , 2018 .

[10]  I. Sasgen,et al.  Joint inversion estimate of regional glacial isostatic adjustment in Antarctica considering a lateral varying Earth structure (ESA STSE Project REGINA) , 2017 .

[11]  S. Jevrejeva,et al.  A consistent sea-level reconstruction and its budget on basin and global scales over 1958-2014 , 2017 .

[12]  David W. Hancock,et al.  On the "Cal-Mode" Correction to TOPEX Satellite Altimetry and Its Effect on the Global Mean Sea Level Time Series , 2017 .

[13]  F. Mercier,et al.  Satellite Radar Altimetry : Principle, Accuracy, and Precision , 2017 .

[14]  Anny Cazenave,et al.  Satellite Altimetry over Oceans and Land Surfaces , 2017 .

[15]  Sergei Rudenko,et al.  An improved and homogeneous altimeter sea level record from the ESA Climate Change Initiative , 2017 .

[16]  S. Lhermitte,et al.  Modelling the climate and surface mass balance of polar ice sheets using RACMO2 – Part 2: Antarctica (1979–2016) , 2017 .

[17]  S. Lhermitte,et al.  Modelling the climate and surface mass balance of polar ice sheets using RACMO2 – Part 1: Greenland (1958–2016) , 2017 .

[18]  X. Fettweis,et al.  Evaluating model simulations of 20th century sea-level rise. Part 1: global mean sea-level change , 2017 .

[19]  E. Berthier,et al.  A spatially resolved estimate of High Mountain Asia glacier mass balances, 2000-2016 , 2017, Nature geoscience.

[20]  Matt A. King,et al.  The increasing rate of global mean sea-level rise during 1993–2014 , 2017 .

[21]  C. Conrad,et al.  Reassessment of 20th century global mean sea level rise , 2017, Proceedings of the National Academy of Sciences.

[22]  H. Dieng,et al.  New estimate of the current rate of sea level rise from a sea level budget approach , 2017 .

[23]  M. Merrifield,et al.  Regional influences on reconstructed global mean sea level , 2017 .

[24]  B. D. Tapley,et al.  Long‐term and seasonal Caspian Sea level change from satellite gravity and altimeter measurements , 2017 .

[25]  John Abraham,et al.  Improved estimates of ocean heat content from 1960 to 2015 , 2017, Science Advances.

[26]  G. Johnson,et al.  As El Niño builds, Pacific Warm Pool expands, ocean gains more heat , 2017 .

[27]  Louise Sørensen,et al.  Greenland and Antarctica Ice Sheet Mass Changes and Effects on Global Sea Level , 2017, Surveys in Geophysics.

[28]  M. Ishii,et al.  Accuracy of Global Upper Ocean Heat Content Estimation Expected from Present Observational Data Sets , 2017 .

[29]  A. Cazenave,et al.  Integrative Study of the Mean Sea Level and Its Components , 2017 .

[30]  W. Dorigo,et al.  A global water resources ensemble of hydrological models: the eartH2Observe Tier-1 dataset , 2016 .

[31]  Marc F. P. Bierkens,et al.  Hydrological impacts of global land cover change and human water use , 2016 .

[32]  L. Longuevergne,et al.  Natural and human-induced terrestrial water storage change: A global analysis using hydrological models and GRACE , 2016 .

[33]  Ankur Pandit,et al.  How accurate are estimates of glacier ice thickness? Results from ITMIX, the Ice Thickness Models Intercomparison eXperiment , 2016 .

[34]  W. Haeberli,et al.  Observation-Based Estimates of Global Glacier Mass Change and Its Contribution to Sea-Level Change , 2016, Surveys in Geophysics.

[35]  Ian M. Howat,et al.  On the recent contribution of the Greenland ice sheet to sea level change , 2016 .

[36]  M. Watkins,et al.  Quantifying and reducing leakage errors in the JPL RL05M GRACE mascon solution , 2016 .

[37]  I. Sasgen,et al.  Geodetic measurements reveal similarities between post–Last Glacial Maximum and present-day mass loss from the Greenland ice sheet , 2016, Science Advances.

[38]  G. Blewitt,et al.  Assessing the impact of vertical land motion on twentieth century global mean sea level estimates , 2016 .

[39]  D. Roemmich,et al.  Multidecadal Change of the South Pacific Gyre Circulation , 2016 .

[40]  James S. Famiglietti,et al.  Fate of Water Pumped from Underground and Contributions to Sea Level Rise , 2016 .

[41]  Matthew Rodell,et al.  Erratum to: Groundwater Storage Changes: Present Status from GRACE Observations , 2016, Surveys in Geophysics.

[42]  Andreas Groh,et al.  The method of tailored sensitivity kernels for GRACE mass change estimates , 2016 .

[43]  G. Spada,et al.  Spectral analysis of sea level during the altimetry era, and evidence for GIA and glacial melting fingerprints , 2016 .

[44]  A. D. Roo,et al.  Global evaluation of runoff from ten state-of-the-art hydrological models , 2016 .

[45]  P. Tregoning,et al.  Journal of Geophysical Research: Solid Earth An assessment of the ICE6G_C(VM5a) glacial isostatic adjustment model , 2016 .

[46]  M. Marcos,et al.  Vertical land motion as a key to understanding sea level change and variability , 2016 .

[47]  J. Famiglietti,et al.  A decade of sea level rise slowed by climate-driven hydrology , 2016, Science.

[48]  J. Church,et al.  Ocean temperatures chronicle the ongoing warming of Earth , 2016 .

[49]  Timothy P. Boyer,et al.  Sensitivity of Global Upper-Ocean Heat Content Estimates to Mapping Methods, XBT Bias Corrections, and Baseline Climatologies* , 2016 .

[50]  A. Sterl,et al.  Fifteen years of ocean observations with the global Argo array , 2016 .

[51]  James Hansen,et al.  An imperative to monitor Earth's energy imbalance , 2016 .

[52]  Peter J. Clarke,et al.  Spatial and temporal Antarctic Ice Sheet mass trends, glacio‐isostatic adjustment, and surface processes from a joint inversion of satellite altimeter, gravity, and GPS data , 2016, Journal of geophysical research. Earth surface.

[53]  Jens Schröter,et al.  Revisiting the contemporary sea-level budget on global and regional scales , 2016, Proceedings of the National Academy of Sciences.

[54]  A. Cazenave,et al.  Satellite Altimetry-Based Sea Level at Global and Regional Scales , 2016, Surveys in Geophysics.

[55]  G. Spada Glacial Isostatic Adjustment and Contemporary Sea Level Rise: An Overview , 2016, Surveys in Geophysics.

[56]  Anny Cazenave,et al.  Evaluation of the Global Mean Sea Level Budget between 1993 and 2014 , 2016, Surveys in Geophysics.

[57]  Y. Wada Modeling Groundwater Depletion at Regional and Global Scales: Present State and Future Prospects , 2016, Surveys in Geophysics.

[58]  Matthew Rodell,et al.  Groundwater Storage Changes: Present Status from GRACE Observations , 2016, Surveys in Geophysics.

[59]  Petra Döll,et al.  Modelling Freshwater Resources at the Global Scale: Challenges and Prospects , 2016, Surveys in Geophysics.

[60]  I. Sasgen,et al.  Potential of the solid-Earth response for limiting long-term West Antarctic Ice Sheet retreat in a warming climate , 2015 .

[61]  C. Delire,et al.  Impacts of snow and organic soils parameterization on northern Eurasian soil temperature profiles simulated by the ISBA land surface model , 2015 .

[62]  A. Cazenave,et al.  Total land water storage change over 2003–2013 estimated from a global mass budget approach , 2015 .

[63]  Jun Li,et al.  Mass gains of the Antarctic ice sheet exceed losses , 2015 .

[64]  Christian Schwatke,et al.  DAHITI – an innovative approach for estimating water level time series over inland waters using multi-mission satellite altimetry , 2015 .

[65]  A. Cazenave,et al.  Sea level budget over 2005–2013: missing contributions and data errors , 2015 .

[66]  Matthias Huss,et al.  A new model for global glacier change and sea-level rise , 2015, Front. Earth Sci..

[67]  K. Macdicken,et al.  Global Forest Resources Assessment 2015: What, why and how?☆ , 2015 .

[68]  S. Sloan,et al.  Forest Resources Assessment of 2015 shows positive global trends but forest loss and degradation persist in poor tropical countries , 2015 .

[69]  Alan Grainger,et al.  Dynamics of global forest area: Results from the FAO Global Forest Resources Assessment 2015 , 2015 .

[70]  E. Zorita,et al.  Detecting anthropogenic footprints in sea level rise , 2015, Nature Communications.

[71]  S. Swenson,et al.  Quantifying renewable groundwater stress with GRACE , 2015, Water resources research.

[72]  Srinivas Bettadpur,et al.  The pole tide and its effect on GRACE time‐variable gravity measurements: Implications for estimates of surface mass variations , 2015 .

[73]  Matt A. King,et al.  Unabated global mean sea-level rise over the satellite altimeter era , 2015 .

[74]  Wenke Sun,et al.  An increase in the rate of global mean sea level rise since 2010 , 2015 .

[75]  M. Watkins,et al.  Improved methods for observing Earth's time variable mass distribution with GRACE using spherical cap mascons , 2015 .

[76]  E. Berthier,et al.  Brief Communication: Contending estimates of 2003–2008 glacier mass balance over the Pamir–Karakoram–Himalaya , 2015 .

[77]  Dean Roemmich,et al.  Unabated planetary warming and its ocean structure since 2006 , 2015 .

[78]  A. Cazenave,et al.  The Sea Level Budget Since 2003: Inference on the Deep Ocean Heat Content , 2015, Surveys in Geophysics.

[79]  R. Kopp,et al.  Probabilistic reanalysis of twentieth-century sea-level rise , 2015, Nature.

[80]  Sergei Rudenko,et al.  Improved Sea Level record over the satellite altimetry era (1993-2010) from the Climate Change Initiative project , 2015 .

[81]  W. Peltier,et al.  Space geodesy constrains ice age terminal deglaciation: The global ICE‐6G_C (VM5a) model , 2015 .

[82]  K. Macdicken,et al.  Global Forest Resources Assessment 2015: how are the world's forests changing? , 2015 .

[83]  P. Holmlund,et al.  Historically unprecedented global glacier decline in the early 21st century , 2015 .

[84]  Anil V. Kulkarni,et al.  Estimating the volume of glaciers in the Himalayan–Karakoram region using different methods , 2014 .

[85]  Z. Martinec,et al.  The rotational feedback on linear-momentum balance in glacial isostatic adjustment , 2014 .

[86]  Thomas Bodin,et al.  Probabilistic surface reconstruction of coastal sea level rise during the twentieth century , 2014 .

[87]  Isabella Velicogna,et al.  Regional acceleration in ice mass loss from Greenland and Antarctica using GRACE time‐variable gravity data , 2014 .

[88]  M. Merrifield,et al.  A unique asymmetry in the pattern of recent sea level change , 2014 .

[89]  D. Chambers,et al.  Relative contributions of ocean mass and deep steric changes to sea level rise between 1993 and 2013 , 2014 .

[90]  J. Willis,et al.  Deep-ocean contribution to sea level and energy budget not detectable over the past decade , 2014 .

[91]  N. Davidson How much wetland has the world lost? Long-term and recent trends in global wetland area , 2014 .

[92]  David Parkes,et al.  Attribution of global glacier mass loss to anthropogenic and natural causes , 2014, Science.

[93]  Brian F. Thomas,et al.  River basin flood potential inferred using GRACE gravity observations at several months lead time , 2014 .

[94]  P. Döll,et al.  Global‐scale assessment of groundwater depletion and related groundwater abstractions: Combining hydrological modeling with information from well observations and GRACE satellites , 2014 .

[95]  Angelyn W. Moore,et al.  The Antarctica component of postglacial rebound model ICE-6G_C (VM5a) based on GPS positioning, exposure age dating of ice thicknesses, and relative sea level histories , 2014 .

[96]  R. Rietbroek,et al.  Key Points: @bullet Consistent Method for Estimating Mass Balances from Grace @bullet Mascon Technique @bullet Evaluate Systematic Errors Gia Correction a Mascon Approach to Assess Ice Sheet and Glacier Mass Balances and Their Uncertainties from Grace Data , 2022 .

[97]  Duncan J. Wingham,et al.  Increased ice losses from Antarctica detected by CryoSat‐2 , 2014 .

[98]  T. Bolch,et al.  The Randolph Glacier inventory: a globally complete inventory of glaciers , 2014 .

[99]  Anny Cazenave,et al.  The rate of sea-level rise , 2014 .

[100]  Petra Döll,et al.  Seasonal Water Storage Variations as Impacted by Water Abstractions: Comparing the Output of a Global Hydrological Model with GRACE and GPS Observations , 2014, Surveys in Geophysics.

[101]  Eric Rignot,et al.  Sustained increase in ice discharge from the Amundsen Sea Embayment, West Antarctica, from 1973 to 2013 , 2014, Geophysical Research Letters.

[102]  J. Kusche,et al.  Regional gravity modelling from spaceborne data: case studies with GOCE , 2014 .

[103]  D. Chambers,et al.  On the ability of global sea level reconstructions to determine trends and variability , 2014 .

[104]  Aslak Grinsted,et al.  Trends and acceleration in global and regional sea levels since 1807 , 2014 .

[105]  A. Jenkins,et al.  Strong Sensitivity of Pine Island Ice-Shelf Melting to Climatic Variability , 2014, Science.

[106]  Olga Didova,et al.  Empirical estimation of present-day Antarctic glacial isostatic adjustment and ice mass change , 2013, The Cryosphere.

[107]  Bruce J. Haines,et al.  Towards the 1 mm/y Stability of the Radial Orbit Error at Regional Scales , 2014 .

[108]  M. R. van den Broeke,et al.  Evaluating Greenland glacial isostatic adjustment corrections using GRACE, altimetry and surface mass balance data , 2014 .

[109]  A. Cazenave,et al.  Effect of the processing methodology on satellite altimetry-based global mean sea level rise over the Jason-1 operating period , 2014, Journal of Geodesy.

[110]  D. Pollard,et al.  A 3-D coupled ice sheet – sea level model applied to Antarctica through the last 40 ky , 2013 .

[111]  I. Sasgen,et al.  Antarctic ice-mass balance 2003 to 2012: regional reanalysis of GRACE satellite gravimetry measurements with improved estimate of glacial-isostatic adjustment based on GPS uplift rates , 2013 .

[112]  Louise Sandberg Sørensen,et al.  Scatter of mass changes estimates at basin scale for Greenland and Antarctica , 2013 .

[113]  D. Chambers,et al.  Ocean bottom pressure seasonal cycles and decadal trends from GRACE Release-05: Ocean circulation implications , 2013 .

[114]  John Abraham,et al.  A review of global ocean temperature observations: Implications for ocean heat content estimates and climate change , 2013, Reviews of Geophysics.

[115]  J. Fasullo,et al.  Australia's unique influence on global sea level in 2010–2011 , 2013 .

[116]  J. Camp,et al.  Antarctica, Greenland and Gulf of Alaska land-ice evolution from an iterated GRACE global mascon solution , 2013, Journal of Glaciology.

[117]  Ingo Sasgen,et al.  Limits in detecting acceleration of ice sheet mass loss due to climate variability , 2013 .

[118]  J. Gregory,et al.  Twentieth-century global-mean sea-level rise: is the whole greater than the sum of the parts? , 2013 .

[119]  Byron D. Tapley,et al.  Contribution of ice sheet and mountain glacier melt to recent sea level rise , 2013 .

[120]  E. Ivins,et al.  Antarctic contribution to sea level rise observed by GRACE with improved GIA correction , 2013 .

[121]  M. R. van den Broeke,et al.  A Reconciled Estimate of Glacier Contributions to Sea Level Rise: 2003 to 2009 , 2013, Science.

[122]  W. Haeberli,et al.  Brief communication "Global glacier volumes and sea level – small but systematic effects of ice below the surface of the ocean and of new local lakes on land" , 2013 .

[123]  I. Joughin,et al.  Time-evolving mass loss of the Greenland Ice Sheet from satellite altimetry , 2013 .

[124]  B. Scanlon,et al.  Ground water and climate change , 2013 .

[125]  Nico Mölg,et al.  Mass loss of Greenland's glaciers and ice caps 2003–2008 revealed from ICESat laser altimetry data , 2013 .

[126]  Thomas Loriaux,et al.  Evolution of glacial lakes from the Northern Patagonia Icefield and terrestrial water storage in a sea-level rise context , 2013 .

[127]  Matthew Rodell,et al.  Groundwater depletion in the Middle East from GRACE with implications for transboundary water management in the Tigris-Euphrates-Western Iran region , 2013, Water resources research.

[128]  James S. Famiglietti,et al.  Irrigation in California's Central Valley strengthens the southwestern U.S. water cycle , 2013 .

[129]  Charmien Johnson Msfc Gravity Recovery and Climate Experiment , 2013 .

[130]  J. Kusche,et al.  Land water contribution to sea level from GRACE and Jason-1measurements , 2013 .

[131]  Zhenwei Huang The Role of Glacial Isostatic Adjustment (GIA) Process On the Determination of Present-Day Sea-Level Rise , 2013 .

[132]  M. Ablain,et al.  Detection of Long-Term Instabilities on Altimeter Backscatter Coefficient Thanks to Wind Speed Data Comparisons from Altimeters and Models , 2012 .

[133]  R. S. Nerem,et al.  Comparison of Global Mean Sea Level Time Series from TOPEX/Poseidon, Jason-1, and Jason-2 , 2012 .

[134]  Nicolas Picot,et al.  Comparing Altimetry with Tide Gauges and Argo Profiling Floats for Data Quality Assessment and Mean Sea Level Studies , 2012 .

[135]  G. Spada,et al.  New estimates of secular sea level rise from tide gauge data and GIA modelling , 2012 .

[136]  J. Wahr,et al.  Computations of the viscoelastic response of a 3-D compressible Earth to surface loading: an application to Glacial Isostatic Adjustment in Antarctica and Canada , 2012 .

[137]  Eric Rignot,et al.  A Reconciled Estimate of Ice-Sheet Mass Balance , 2012, Science.

[138]  Alexander H. Jarosch,et al.  Past and future sea-level change from the surface mass balance of glaciers , 2012 .

[139]  Son V. Nghiem,et al.  The extreme melt across the Greenland ice sheet in 2012 , 2012 .

[140]  C. Taylor,et al.  Observations of increased tropical rainfall preceded by air passage over forests , 2012, Nature.

[141]  Aslak Grinsted,et al.  An estimate of global glacier volume , 2012 .

[142]  Matt A. King,et al.  A new glacial isostatic adjustment model for Antarctica: calibrated and tested using observations of relative sea‐level change and present‐day uplift rates , 2012 .

[143]  V. Radic,et al.  Significant contribution to total mass from very small glaciers , 2012 .

[144]  S. Kanae,et al.  Model estimates of sea-level change due to anthropogenic impacts on terrestrial water storage , 2012 .

[145]  D. Roemmich,et al.  135 years of global ocean warming between the Challenger expedition and the Argo Programme , 2012 .

[146]  M. Bierkens,et al.  Nonsustainable groundwater sustaining irrigation: A global assessment , 2012 .

[147]  Eric Rignot,et al.  Timing and origin of recent regional ice-mass loss in Greenland , 2012 .

[148]  S. Levitus,et al.  World ocean heat content and thermosteric sea level change (0–2000 m), 1955–2010 , 2012 .

[149]  B. Chao,et al.  Past and future contribution of global groundwater depletion to sea‐level rise , 2012 .

[150]  Yongwei Sheng,et al.  Drained thaw lake basin recovery on the western Arctic Coastal Plain of Alaska using high-resolution digital elevation models and remote sensing imagery , 2012 .

[151]  W. Tad Pfeffer,et al.  Recent contributions of glaciers and ice caps to sea level rise , 2012, Nature.

[152]  L. Longuevergne,et al.  Monitoring groundwater storage changes in the highly seasonal humid tropics: Validation of GRACE measurements in the Bengal Basin , 2012 .

[153]  Anny Cazenave,et al.  An Assessment of Two-Dimensional Past Sea Level Reconstructions Over 1950–2009 Based on Tide-Gauge Data and Different Input Sea Level Grids , 2012, Surveys in Geophysics.

[154]  Kwang-Yul Kim,et al.  Reconstructing sea level using cyclostationary empirical orthogonal functions , 2011 .

[155]  B. Scheuchl,et al.  Ice Flow of the Antarctic Ice Sheet , 2011, Science.

[156]  L. Konikow Contribution of global groundwater depletion since 1900 to sea‐level rise , 2011 .

[157]  M. Tamisiea,et al.  Ongoing glacial isostatic contributions to observations of sea level change , 2011 .

[158]  D. Roemmich,et al.  The global ocean imprint of ENSO , 2011 .

[159]  Martin Vermeer,et al.  Climate related sea-level variations over the past two millennia , 2011, Proceedings of the National Academy of Sciences.

[160]  N. Butt,et al.  Evidence that deforestation affects the onset of the rainy season in Rondonia, Brazil , 2011 .

[161]  Josh K. Willis,et al.  Balancing the Sea Level Budget , 2011 .

[162]  J. Gregory,et al.  Understanding and projecting sea level change , 2011 .

[163]  J. Cogley,et al.  Estimating the Glacier Contribution to Sea-Level Rise for the Period 1800–2005 , 2011 .

[164]  John B. Anderson,et al.  Understanding Sea-Level Rise and Variability , 2011 .

[165]  J. Wahr,et al.  Ice Age Earth Rotation , 2011 .

[166]  N. White,et al.  Sea-Level Rise from the Late 19th to the Early 21st Century , 2011 .

[167]  Eric Rignot,et al.  Acceleration of the contribution of the Greenland and Antarctic ice sheets to sea level rise , 2011 .

[168]  Bruce C. Douglas,et al.  Experiments in Reconstructing Twentieth-Century Sea Levels , 2010 .

[169]  Gregory C. Johnson,et al.  Warming of Global Abyssal and Deep Southern Ocean Waters between the 1990s and 2000s: Contributions to Global Heat and Sea Level Rise Budgets* , 2010 .

[170]  R. Steven Nerem,et al.  Ocean mass from GRACE and glacial isostatic adjustment , 2010 .

[171]  Shuhab D. Khan,et al.  A possible connection of Caspian Sea level fluctuations with meteorological factors and seismicity , 2010 .

[172]  J. Bamber,et al.  Sea‐level fingerprint of continental water and ice mass change from GRACE , 2010 .

[173]  Michael B. Heflin,et al.  Simultaneous estimation of global present-day water transport and glacial isostatic adjustment , 2010 .

[174]  Gary T. Mitchum,et al.  Estimating Mean Sea Level Change from the TOPEX and Jason Altimeter Missions , 2010 .

[175]  Jens Schröter,et al.  Reconstruction of regional mean sea level anomalies from tide gauges using neural networks , 2010 .

[176]  A. Cazenave,et al.  Terrestrial Water‐Storage Contributions to Sea‐Level Rise and Variability , 2010 .

[177]  K. Lambeck,et al.  Paleoenvironmental Records, Geophysical Modeling, and Reconstruction of Sea-Level Trends and Variability on Centennial and Longer Timescales , 2010 .

[178]  Peter Steigenberger,et al.  Improved Constraints on Models of Glacial Isostatic Adjustment: A Review of the Contribution of Ground-Based Geodetic Observations , 2010 .

[179]  R. Hock,et al.  Regional and global volumes of glaciers derived from statistical upscaling of glacier inventory data , 2010 .

[180]  Guillaume Ramillien,et al.  External geophysics, climate and environment Global land water storage change from GRACE over 2002-2009; Inference on sea level , 2010 .

[181]  Bob E. Schutz,et al.  Glacial Isostatic Adjustment over Antarctica from combined ICESat and GRACE satellite data , 2009 .

[182]  Paulo Nobre,et al.  Amazon Deforestation and Climate Change in a Coupled Model Simulation , 2009 .

[183]  W. Peltier,et al.  On the origins of Earth rotation anomalies: New insights on the basis of both “paleogeodetic” data and Gravity Recovery and Climate Experiment (GRACE) data , 2009 .

[184]  G. Mitchum,et al.  An Anomalous Recent Acceleration of Global Sea Level Rise , 2009 .

[185]  I. Velicogna Increasing rates of ice mass loss from the Greenland and Antarctic ice sheets revealed by GRACE , 2009 .

[186]  V. M. Tiwari,et al.  Dwindling groundwater resources in northern India, from satellite gravity observations , 2009 .

[187]  J. Famiglietti,et al.  Satellite-based estimates of groundwater depletion in India , 2009, Nature.

[188]  W. R. Peltier,et al.  Closure of the budget of global sea level rise over the GRACE era: the importance and magnitudes of the required corrections for global glacial isostatic adjustment , 2009 .

[189]  Dean Roemmich,et al.  The 2004-2008 mean and annual cycle of temperature, salinity, and steric height in the global ocean from the Argo Program , 2009 .

[190]  Dennis P. Lettenmaier,et al.  Land waters and sea level , 2009 .

[191]  Chris W. Hughes,et al.  Identifying the causes of sea-level change , 2009 .

[192]  A. Cazenave,et al.  A new assessment of the error budget of global mean sea level rate estimated by satellite altimetry over 1993–2008 , 2009 .

[193]  M. Kimoto,et al.  Reevaluation of historical ocean heat content variations with time-varying XBT and MBT depth bias corrections , 2009 .

[194]  D. Chambers Calculating trends from GRACE in the presence of large changes in continental ice storage and ocean mass , 2009 .

[195]  E. Leuliette,et al.  Closing the sea level rise budget with altimetry, Argo, and GRACE , 2009 .

[196]  J. Graham Cogley Geodetic and direct mass-balance measurements: comparison and joint analysis , 2009, Annals of Glaciology.

[197]  Guillaume Ramillien,et al.  Sea level budget over 2003-2008: A reevaluation from GRACE space gravimetry, satellite altimetry and Argo , 2009 .

[198]  D. Chambers,et al.  GRACE observes small‐scale mass loss in Greenland , 2008 .

[199]  D. Chambers,et al.  Estimating Geocenter Variations from a Combination of GRACE and Ocean Model Output , 2008 .

[200]  Peter J. Gleckler,et al.  Improved estimates of upper-ocean warming and multi-decadal sea-level rise , 2008, Nature.

[201]  J. Willis,et al.  Assessing the globally averaged sea level budget on seasonal to interannual timescales , 2008 .

[202]  B. Chao,et al.  Impact of Artificial Reservoir Water Impoundment on Global Sea Level , 2008, Science.

[203]  S. Shrestha,et al.  Groundwater and Climate Change , 2008 .

[204]  Shigeki Hosoda,et al.  A monthly mean dataset of global oceanic temperature and salinity derived from Argo float observations , 2008 .

[205]  J. Willis,et al.  Closing the Globally Averaged Sea Level Budget on Seasonal to Interannual Time Scales , 2007 .

[206]  Byron D. Tapley,et al.  Patagonia Icefield melting observed by Gravity Recovery and Climate Experiment (GRACE) , 2007 .

[207]  Archie Paulson,et al.  FAST TRACK PAPER: Inference of mantle viscosity from GRACE and relative sea level data , 2007 .

[208]  B. Scanlon,et al.  Comparison of seasonal terrestrial water storage variations from GRACE with groundwater‐level measurements from the High Plains Aquifer (USA) , 2007 .

[209]  Giorgio Spada,et al.  SELEN: A Fortran 90 program for solving the "sea-level equation" , 2007, Comput. Geosci..

[210]  J. Clark,et al.  On Postglacial Sea Level , 2007 .

[211]  Lu Zhang,et al.  Global impacts of conversions from natural to agricultural ecosystems on water resources: Quantity versus quality , 2007 .

[212]  K. Koltermann,et al.  How much is the ocean really warming? , 2007 .

[213]  H. L. Miller,et al.  Climate Change 2007: The Physical Science Basis , 2007 .

[214]  Stefano Schiavon,et al.  Climate Change 2007: The Physical Science Basis. , 2007 .

[215]  T. Wilbanks,et al.  Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change , 2007 .

[216]  R. Nerem,et al.  Recent Greenland Ice Mass Loss by Drainage System from Satellite Gravity Observations , 2006, Science.

[217]  A. Ohmura,et al.  Mass balance of glaciers and ice caps: Consensus estimates for 1961–2004 , 2006 .

[218]  S. Jevrejeva,et al.  Nonlinear trends and multiyear cycles in sea level records , 2006 .

[219]  S. Kanae,et al.  Global Hydrological Cycles and World Water Resources , 2006, Science.

[220]  A. Paulson,et al.  Reanalysis of ancient eclipse, astronomic and geodetic data: A possible route to resolving the enigma of global sea-level rise , 2006 .

[221]  J. Wahr,et al.  Measurements of Time-Variable Gravity Show Mass Loss in Antarctica , 2006, Science.

[222]  N. White,et al.  A 20th century acceleration in global sea‐level rise , 2006 .

[223]  James L. Davis,et al.  Constraining hydrological and cryospheric mass flux in southeastern Alaska using space‐based gravity measurements , 2005 .

[224]  R. Bras,et al.  Contemporary climate change in the Amazon , 2005 .

[225]  J. Mitrovica,et al.  On post-glacial sea level – II. Numerical formulation and comparative results on spherically symmetric models , 2005 .

[226]  A. Paulson,et al.  The rotational stability of an ice-age earth , 2005 .

[227]  M. Watkins,et al.  GRACE Measurements of Mass Variability in the Earth System , 2004, Science.

[228]  M. Watkins,et al.  The gravity recovery and climate experiment: Mission overview and early results , 2004 .

[229]  K. Lambeck,et al.  Constraints on the Greenland Ice Sheet since the Last Glacial Maximum from sea-level observations and glacial-rebound models , 2004 .

[230]  W. Peltier GLOBAL GLACIAL ISOSTASY AND THE SURFACE OF THE ICE-AGE EARTH: The ICE-5G (VM2) Model and GRACE , 2004 .

[231]  Andreas Kääb,et al.  Combining satellite multispectral image data and a digital elevation model for mapping debris-covered glaciers , 2004 .

[232]  A. Cazenave,et al.  Contribution of climate-driven change in continental water storage to recent sea-level rise , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[233]  J. Mitrovica,et al.  On post-glacial sea level: I. General theory , 2003 .

[234]  W. Munk Twentieth century sea level: An enigma , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[235]  J. Mitrovica,et al.  Ice sheets, sea level and the dynamic earth , 2002 .

[236]  K. Lambeck,et al.  Sea Level Change Through the Last Glacial Cycle , 2001, Science.

[237]  Hans-Peter,et al.  Inversion of global tide gauge data for present-day ice load changes (scientific paper) , 2001 .

[238]  W. Peltier Chapter 4 Global glacial isostatic adjustment and modern instrumental records of relative sea level history , 2001 .

[239]  V. Gornitz Chapter 5 Impoundment, groundwater mining, and other hydrologic transformations: Impacts on global sea level rise , 2001 .

[240]  B. C. Douglas,et al.  Chapter 3 Sea level change in the era of the recording tide gauge , 2001 .

[241]  J. Gregory,et al.  Predictions of global and regional sea‐level rise using AOGCMs with and without flux adjustment , 2000 .

[242]  C. Vörösmarty,et al.  Anthropogenic Disturbance of the Terrestrial Water Cycle , 2000 .

[243]  D. Sahagian Global physical effects of anthropogenic hydrological alterations: sea level and water redistribution , 2000 .

[244]  W. T. Pfeffer,et al.  Response time of glaciers as a function of size and mass balance: 1. Theory , 1998 .

[245]  A. Belward,et al.  The IGBP-DIS global 1km land cover data set, DISCover: First results , 1997 .

[246]  Bruce C. Douglas,et al.  GLOBAL SEA RISE: A REDETERMINATION , 1997 .

[247]  C. Rosenzweig,et al.  Effects of anthropogenic intervention in the land hydrologic cycle on global sea level rise , 1997 .

[248]  Thomas R. Loveland,et al.  The IGBP-DIS global 1 km land cover data set , 1997 .

[249]  V. Gornitz Sea-level rise: A review of recent past and near-future trends , 1995 .

[250]  F. Schwartz,et al.  Direct anthropogenic contributions to sea level rise in the twentieth century , 1994, Nature.

[251]  Andrew J. Plater,et al.  Book reviewSea-level change: Roger Revelle; Studies in Geophysics, National Research Council, National Academy Press, Washington, DC, 1990; xii + 246 pp.; USD 29.95, GBP 25.75; ISBN 0-309-04039 , 1992 .

[252]  Bruce C. Douglas,et al.  Global sea level rise , 1991 .

[253]  J. Shukla,et al.  Amazon Deforestation and Climate Change , 1990, Science.

[254]  Tómas Jóhannesson,et al.  Time–Scale for Adjustment of Glaciers to Changes in Mass Balance , 1989, Journal of Glaciology.

[255]  Inez Y. Fung,et al.  Methane emission from natural wetlands: Global distribution, area, and environmental characteristics of sources , 1987 .

[256]  T. Barnett The estimation of «global» sea level change: a problem of uniqueness , 1984 .

[257]  J. Hansen,et al.  Global Sea Level Trend in the Past Century , 1982, Science.