Geometric modeling with conical meshes and developable surfaces

In architectural freeform design, the relation between shape and fabrication poses new challenges and requires more sophistication from the underlying geometry. The new concept of conical meshes satisfies central requirements for this application: They are quadrilateral meshes with planar faces, and therefore particularly suitable for the design of freeform glass structures. Moreover, they possess a natural offsetting operation and provide a support structure orthogonal to the mesh. Being a discrete analogue of the network of principal curvature lines, they represent fundamental shape characteristics. We show how to optimize a quad mesh such that its faces become planar, or the mesh becomes even conical. Combining this perturbation with subdivision yields a powerful new modeling tool for all types of quad meshes with planar faces, making subdivision attractive for architecture design and providing an elegant way of modeling developable surfaces.

[1]  Carlo H. Séquin CAD Tools for Aesthetic Engineering , 2004 .

[2]  Martin Rumpf,et al.  Robust feature detection and local classification for surfaces based on moment analysis , 2004, IEEE Transactions on Visualization and Computer Graphics.

[3]  Roberto Cipolla,et al.  The visual motion of curves and surfaces , 1998, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[4]  Chih-Hsing Chu,et al.  Developable Bézier patches: properties and design , 2002, Comput. Aided Des..

[5]  Michael Garland,et al.  Harmonic functions for quadrilateral remeshing of arbitrary manifolds , 2005, Comput. Aided Geom. Des..

[6]  Günter Aumann,et al.  Degree elevation and developable Be'zier surfaces , 2004, Comput. Aided Geom. Des..

[7]  Mathieu Desbrun,et al.  Variational shape approximation , 2004, SIGGRAPH 2004.

[8]  K. Polthier,et al.  On the convergence of metric and geometric properties of polyhedral surfaces , 2007 .

[9]  Charlie C. L. Wang,et al.  Achieving developability of a polygonal surface by minimum deformation: a study of global and local optimization approaches , 2004, The Visual Computer.

[10]  Axel Kilian,et al.  Design exploration through bidirectional modeling of constraints , 2006 .

[11]  William H. Frey,et al.  Modeling buckled developable surfaces by triangulation , 2004, Comput. Aided Des..

[12]  Alla Sheffer,et al.  D‐Charts: Quasi‐Developable Mesh Segmentation , 2005, Comput. Graph. Forum.

[13]  A. Bobenko,et al.  Discrete differential geometry. Consistency as integrability , 2005, math/0504358.

[14]  Hans-Peter Seidel,et al.  Mesh segmentation driven by Gaussian curvature , 2005, The Visual Computer.

[15]  Ian R. Porteous,et al.  Geometric differentiation for the intelligence of curves and surfaces , 1994 .

[16]  L. Mahadevan,et al.  Conical dislocations in crumpling , 1999, Nature.

[17]  Leif Kobbelt,et al.  Direct anisotropic quad-dominant remeshing , 2004, 12th Pacific Conference on Computer Graphics and Applications, 2004. PG 2004. Proceedings..

[18]  Gérard G. Medioni,et al.  Object modeling by registration of multiple range images , 1991, Proceedings. 1991 IEEE International Conference on Robotics and Automation.

[19]  Thomas E. Cecil Lie sphere geometry , 1992 .

[20]  D. Matthes,et al.  Discrete and smooth orthogonal systems: C∞-approximation , 2003 .

[21]  Kaj Madsen,et al.  Optimization with constraints , 1999 .

[22]  Dennis R. Shelden,et al.  A Parametric Strategy for Freeform Glass Structures Using Quadrilateral Planar Facets , 2004, ACADIA proceedings.

[23]  Carl Tim Kelley,et al.  Iterative methods for optimization , 1999, Frontiers in applied mathematics.

[24]  A. Bobenko,et al.  Minimal surfaces from circle patterns : Geometry from combinatorics , 2003, math/0305184.

[25]  Min-Yang Yang,et al.  Triangular mesh offset for generalized cutter , 2005, Comput. Aided Des..

[26]  Pierre Alliez,et al.  Anisotropic polygonal remeshing , 2003, ACM Trans. Graph..

[27]  Ang Yan Sheng,et al.  Discrete Differential Geometry , 2017 .

[28]  Pierre Alliez,et al.  Periodic global parameterization , 2006, TOGS.

[29]  David Cohen-Steiner,et al.  Restricted delaunay triangulations and normal cycle , 2003, SCG '03.

[30]  J. Mitani,et al.  Making papercraft toys from meshes using strip-based approximate unfolding , 2004, SIGGRAPH 2004.

[31]  Johannes Wallner,et al.  An Angle Criterion for Conical Mesh Vertices , 2006 .

[32]  Manfredo P. do Carmo,et al.  Differential geometry of curves and surfaces , 1976 .

[33]  K. Polthier Polyhedral Surfaces of Constant Mean Curvature , 2002 .

[34]  H. Pottmann,et al.  Computational Line Geometry , 2001 .