Effects of Image Characteristics on Performance of Tumor Delineation Methods: A Test–Retest Assessment

PET can be used to monitor response during chemotherapy and assess biologic target volumes for radiotherapy. Previous simulation studies have shown that the performance of various automatic or semiautomatic tumor delineation methods depends on image characteristics. The purpose of this study was to assess test–retest variability of tumor delineation methods, with emphasis on the effects of several image characteristics (e.g., resolution and contrast). Methods: Baseline test–retest data from 19 non–small cell lung cancer patients were obtained using 18F-FDG (n = 10) and 3′-deoxy-3′-18F-fluorothymidine (18F-FLT) (n = 9). Images were reconstructed with varying spatial resolution and contrast. Six different types of tumor delineation methods, based on various thresholds or on a gradient, were applied to all datasets. Test–retest variability of metabolic volume and standardized uptake value (SUV) was determined. Results: For both tracers, size of metabolic volume and test–retest variability of both metabolic volume and SUV were affected by the image characteristics and tumor delineation method used. The median volume test–retest variability ranged from 8.3% to 23% and from 7.4% to 29% for 18F-FDG and 18F-FLT, respectively. For all image characteristics studied, larger differences (≤10-fold higher) were seen in test–retest variability of metabolic volume than in SUV. Conclusion: Test–retest variability of both metabolic volume and SUV varied with tumor delineation method, radiotracer, and image characteristics. The results indicate that a careful optimization of imaging and delineation method parameters is needed when metabolic volume is used, for example, as a response assessment parameter.

[1]  David Schuster,et al.  Comparison of CT- and FDG-PET-defined gross tumor volume in intensity-modulated radiotherapy for head-and-neck cancer. , 2005, International journal of radiation oncology, biology, physics.

[2]  Tomio Inoue,et al.  Use of PET and PET/CT for radiation therapy planning: IAEA expert report 2006-2007. , 2009, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology.

[3]  R. Boellaard Standards for PET Image Acquisition and Quantitative Data Analysis , 2009, Journal of Nuclear Medicine.

[4]  R. Boellaard,et al.  Effects of noise, image resolution, and ROI definition on the accuracy of standard uptake values: a simulation study. , 2004, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[5]  Anne Bol,et al.  Tri-dimensional automatic segmentation of PET volumes based on measured source-to-background ratios: influence of reconstruction algorithms. , 2003, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology.

[6]  Andrea Schaefer,et al.  A contrast-oriented algorithm for FDG-PET-based delineation of tumour volumes for the radiotherapy of lung cancer: derivation from phantom measurements and validation in patient data , 2008, European Journal of Nuclear Medicine and Molecular Imaging.

[7]  T D Cradduck,et al.  National electrical manufacturers association , 1983, Journal of the A.I.E.E..

[8]  Jinming Yu,et al.  Comparison of (18)F-fluorothymidine and (18)F-fluorodeoxyglucose PET/CT in delineating gross tumor volume by optimal threshold in patients with squamous cell carcinoma of thoracic esophagus. , 2010, International journal of radiation oncology, biology, physics.

[9]  Quynh-Thu Le,et al.  Non-small cell lung cancer: Clinical practice guidelines in oncology , 2006 .

[10]  Y. Nishiyama,et al.  Correlation of 18F-FLT and 18F-FDG uptake on PET with Ki-67 immunohistochemistry in non-small cell lung cancer , 2007, European Journal of Nuclear Medicine and Molecular Imaging.

[11]  Anne Bol,et al.  A gradient-based method for segmenting FDG-PET images: methodology and validation , 2007, European Journal of Nuclear Medicine and Molecular Imaging.

[12]  Ronald Boellaard,et al.  Repeatability of Metabolically Active Volume Measurements with 18F-FDG and 18F-FLT PET in Non–Small Cell Lung Cancer , 2010, The Journal of Nuclear Medicine.

[13]  R. Boellaard,et al.  Experimental and clinical evaluation of iterative reconstruction (OSEM) in dynamic PET: quantitative characteristics and effects on kinetic modeling. , 2001, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[14]  W. Oyen,et al.  FDG PET and PET/CT: EANM procedure guidelines for tumour PET imaging: version 1.0 , 2009, European Journal of Nuclear Medicine and Molecular Imaging.

[15]  W. Oyen,et al.  Predictive and prognostic value of FDG‐PET in nonsmall‐cell lung cancer , 2007, Cancer.

[16]  Dimitris Visvikis,et al.  Reproducibility of 18F-FDG and 3′-Deoxy-3′-18F-Fluorothymidine PET Tumor Volume Measurements , 2010, The Journal of Nuclear Medicine.

[17]  T. Mattfeldt,et al.  Clinical relevance of imaging proliferative activity in lung nodules , 2005, European Journal of Nuclear Medicine and Molecular Imaging.

[18]  G Brix,et al.  Performance evaluation of a whole-body PET scanner using the NEMA protocol. National Electrical Manufacturers Association. , 1997, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[19]  Nico Karssemeijer,et al.  A novel iterative method for lesion delineation and volumetric quantification with FDG PET , 2007, Nuclear medicine communications.

[20]  T Ido,et al.  Intratumoral distribution of fluorine-18-fluorodeoxyglucose in vivo: high accumulation in macrophages and granulation tissues studied by microautoradiography. , 1992, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[21]  R. Boellaard,et al.  Reproducibility of quantitative 18F-3′-deoxy-3′-fluorothymidine measurements using positron emission tomography , 2009, European Journal of Nuclear Medicine and Molecular Imaging.