The role of precursor gases on the surface restructuring of catalyst films during carbon nanotube growth

[1]  B. Nichols,et al.  Critical oxide thickness for efficient single-walled carbon nanotube growth on silicon using thin SiO2 diffusion barriers. , 2006, Small.

[2]  John Robertson,et al.  Catalytic chemical vapor deposition of single-wall carbon nanotubes at low temperatures. , 2006, Nano letters.

[3]  J. Robertson,et al.  Effects of pre-treatment and plasma enhancement on chemical vapor deposition of carbon nanotubes from ultra-thin catalyst films , 2006 .

[4]  A. Slocum,et al.  Growth of conformal single-walled carbon nanotube films from Mo/Fe/Al2O3 deposited by electron beam evaporation , 2006 .

[5]  Donald R. Baer,et al.  Void formation during early stages of passivation: Initial oxidation of iron nanoparticles at room temperature , 2005 .

[6]  J. Robertson,et al.  Effects of catalyst film thickness on plasma-enhanced carbon nanotube growth , 2005 .

[7]  Rajesh R Naik,et al.  Constrained iron catalysts for single-walled carbon nanotube growth. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[8]  Ali Javey,et al.  Regular arrays of 2 nm metal nanoparticles for deterministic synthesis of nanomaterials. , 2005, Journal of the American Chemical Society.

[9]  M. Payne,et al.  Surface diffusion: the low activation energy path for nanotube growth. , 2005, Physical review letters.

[10]  Ravi M. Todi,et al.  Comparison of the agglomeration behavior of thin metallic films on SiO2 , 2005 .

[11]  P. Oelhafen,et al.  The Influence of Catalyst Chemical State and Morphology on Carbon Nanotube Growth , 2004 .

[12]  J. Nørskov,et al.  Atomic-scale imaging of carbon nanofibre growth , 2004, Nature.

[13]  S. R. Silva,et al.  Formation of low-temperature self-organized nanoscale nickel metal islands , 2003 .

[14]  E. Campbell,et al.  Particle size dependence and model for iron-catalyzed growth of carbon nanotubes by thermal chemical vapor deposition , 2003 .

[15]  Jens R. Rostrup-Nielsen,et al.  Atom-Resolved Imaging of Dynamic Shape Changes in Supported Copper Nanocrystals , 2002, Science.

[16]  Hongjie Dai,et al.  Carbon nanotubes: opportunities and challenges , 2002 .

[17]  H. Dai,et al.  Growth of Single-Walled Carbon Nanotubes from Discrete Catalytic Nanoparticles of Various Sizes , 2001 .

[18]  William A. Goddard,et al.  Melting and crystallization in Ni nanoclusters: The mesoscale regime , 2001 .

[19]  Freek Kapteijn,et al.  Catalyst deactivation: is it predictable?: What to do? , 2001 .

[20]  Yayi Wei,et al.  Effect of catalyst film thickness on carbon nanotube growth by selective area chemical vapor deposition , 2001 .

[21]  M. Eriksson,et al.  Morphology changes of thin Pd films grown on SiO2: influence of adsorbates and temperature , 1999 .

[22]  Evans,et al.  Coarsening mechanisms in a metal film: From cluster diffusion to vacancy ripening. , 1996, Physical review letters.

[23]  Carl V. Thompson,et al.  Capillary instabilities in thin, continuous films , 1992 .

[24]  D. Steigerwald,et al.  The role of adsorbed gases in metal on metal epitaxy , 1989 .

[25]  Legoues,et al.  Influence of thin SiO2 interlayers on chemical reaction and microstructure at the Ni/Si(111) interface. , 1986, Physical review. B, Condensed matter.

[26]  E. Ruckenstein,et al.  Role of physical and chemical interactions in the behavior of supported metal catalysts: Iron on alumina—A case study , 1985 .

[27]  M.-A. Nicolet,et al.  Reaction of thin metal films with SiO2 substrates , 1978 .