A finite-volume module for simulating global all-scale atmospheric flows

The paper documents the development of a global nonhydrostatic finite-volume module designed to enhance an established spectral-transform based numerical weather prediction (NWP) model. The module adheres to NWP standards, with formulation of the governing equations based on the classical meteorological latitude-longitude spherical framework. In the horizontal, a bespoke unstructured mesh with finite-volumes built about the reduced Gaussian grid of the existing NWP model circumvents the notorious stiffness in the polar regions of the spherical framework. All dependent variables are co-located, accommodating both spectral-transform and grid-point solutions at the same physical locations. In the vertical, a uniform finite-difference discretisation facilitates the solution of intricate elliptic problems in thin spherical shells, while the pliancy of the physical vertical coordinate is delegated to generalised continuous transformations between computational and physical space. The newly developed module assumes the compressible Euler equations as default, but includes reduced soundproof PDEs as an option. Furthermore, it employs semi-implicit forward-in-time integrators of the governing PDE systems, akin to but more general than those used in the NWP model. The module shares the equal regions parallelisation scheme with the NWP model, with multiple layers of parallelism hybridising MPI tasks and OpenMP threads. The efficacy of the developed nonhydrostatic module is illustrated with benchmarks of idealised global weather.

[1]  Joanna Szmelter,et al.  An edge-based unstructured mesh framework for atmospheric flows , 2011 .

[2]  Vivian Lee,et al.  The Canadian Global Environmental Multiscale model on the Yin‐Yang grid system , 2011 .

[3]  J. Szmelter,et al.  MPDATA: An edge-based unstructured-grid formulation , 2005 .

[4]  Masaki Satoh,et al.  Nonhydrostatic icosahedral atmospheric model (NICAM) for global cloud resolving simulations , 2008, J. Comput. Phys..

[5]  T. L. Keller,et al.  Implications of the Hydrostatic Assumption on Atmospheric Gravity Waves , 1994 .

[6]  Joanna Szmelter,et al.  Iterated upwind schemes for gas dynamics , 2009, J. Comput. Phys..

[7]  Paul C. Leopardi A PARTITION OF THE UNIT SPHERE INTO REGIONS OF EQUAL AREA AND SMALL DIAMETER , 2006 .

[8]  D. Williamson,et al.  A baroclinic instability test case for atmospheric model dynamical cores , 2006 .

[9]  Mats Hamrud,et al.  A Fast Spherical Harmonics Transform for Global NWP and Climate Models , 2013 .

[10]  Christian Kühnlein,et al.  A consistent framework for discrete integrations of soundproof and compressible PDEs of atmospheric dynamics , 2014, J. Comput. Phys..

[11]  P. Smolarkiewicz,et al.  Effective eddy viscosities in implicit large eddy simulations of turbulent flows , 2003 .

[12]  Piotr K. Smolarkiewicz,et al.  Anelastic and Compressible Simulation of Moist Deep Convection , 2014 .

[13]  D. Durran Improving the Anelastic Approximation , 1989 .

[14]  Joanna Szmelter,et al.  An unstructured-mesh atmospheric model for nonhydrostatic dynamics: Towards optimal mesh resolution , 2013, J. Comput. Phys..

[15]  Joanna Szmelter,et al.  MPDATA error estimator for mesh adaptivity , 2006 .

[16]  P. Smolarkiewicz,et al.  Solitary wave effects north of Strait of Messina , 2007 .

[17]  L. Margolin,et al.  STUDIES IN GEOPHYSICS , 2012 .

[18]  Piotr K. Smolarkiewicz,et al.  Multidimensional positive definite advection transport algorithm: an overview , 2006 .

[19]  Piotr K. Smolarkiewicz,et al.  Preconditioned Conjugate-Residual Solvers for Helmholtz Equations in Nonhydrostatic Models , 1997 .

[20]  Frank B. Lipps On the anelastic approximation for deep convection , 1990 .

[21]  J. Prusa,et al.  An all-scale anelastic model for geophysical flows: dynamic grid deformation , 2003 .

[22]  N. Wedi,et al.  Extending Gal-Chen and Somerville terrain-following coordinate transformation on time-dependent curvilinear boundaries , 2004 .

[23]  J. Szmelter,et al.  A nonhydrostatic unstructured-mesh soundproof model for simulation of internal gravity waves , 2011 .

[24]  M. Baldauf,et al.  Operational Convective-Scale Numerical Weather Prediction with the COSMO Model: Description and Sensitivities , 2011 .

[25]  M. Suárez,et al.  A proposal for the intercomparison of the dynamical cores of atmospheric general circulation models , 1994 .

[26]  J. Prusa,et al.  EULAG, a computational model for multiscale flows , 2008 .

[27]  Clive Temperton,et al.  A two‐time‐level semi‐Lagrangian global spectral model , 2001 .

[28]  Joanna Szmelter,et al.  An edge-based unstructured mesh discretisation in geospherical framework , 2010, J. Comput. Phys..

[29]  Pierre Bénard,et al.  Dynamical kernel of the Aladin–NH spectral limited‐area model: Revised formulation and sensitivity experiments , 2010 .

[30]  Mats Hamrud,et al.  A Partitioned Global Address Space implementation of the European Centre for Medium Range Weather Forecasts Integrated Forecasting System , 2015, Int. J. High Perform. Comput. Appl..

[31]  Fuqing Zhang,et al.  Internal gravity waves from atmospheric jets and fronts , 2014 .

[32]  M. Diamantakis,et al.  An inherently mass‐conserving semi‐implicit semi‐Lagrangian discretization of the deep‐atmosphere global non‐hydrostatic equations , 2014 .

[33]  Z. Janjic A nonhydrostatic model based on a new approach , 2002 .

[34]  P. Smolarkiewicz,et al.  On Forward-in-Time Differencing for Fluids: Extension to a Curvilinear Framework , 1993 .

[35]  R. Hemler,et al.  A Scale Analysis of Deep Moist Convection and Some Related Numerical Calculations , 1982 .

[36]  George Mozdzynski A NEW PARTITIONING APPROACH FOR ECMWF'S INTEGRATED FORECASTING SYSTEM (IFS) , 2007 .

[37]  Christian Kühnlein,et al.  Modelling atmospheric flows with adaptive moving meshes , 2012, J. Comput. Phys..

[38]  Nils Wedi,et al.  A framework for testing global non‐hydrostatic models , 2009 .

[39]  D. Williamson The Evolution of Dynamical Cores for Global Atmospheric Models(125th Anniversary Issue of the Meteorological Society of Japan) , 2007 .

[40]  V. Masson,et al.  The AROME-France Convective-Scale Operational Model , 2011 .

[41]  Piotr K. Smolarkiewicz,et al.  libmpdata++ 1.0: a library of parallel MPDATA solvers for systems of generalised transport equations , 2015 .

[42]  N. Wedi,et al.  Increasing horizontal resolution in numerical weather prediction and climate simulations: illusion or panacea? , 2014, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[43]  Paul Charbonneau,et al.  EULAG, a computational model for multiscale flows: An MHD extension , 2013, J. Comput. Phys..

[44]  Lars Isaksen,et al.  The IFS Model: A Parallel Production Weather Code , 1995, Parallel Comput..