Digital Droplet Multiple Displacement Amplification (ddMDA) for Whole Genome Sequencing of Limited DNA Samples

Multiple displacement amplification (MDA) is a widely used technique for amplification of DNA from samples containing limited amounts of DNA (e.g., uncultivable microbes or clinical samples) before whole genome sequencing. Despite its advantages of high yield and fidelity, it suffers from high amplification bias and non-specific amplification when amplifying sub-nanogram of template DNA. Here, we present a microfluidic digital droplet MDA (ddMDA) technique where partitioning of the template DNA into thousands of sub-nanoliter droplets, each containing a small number of DNA fragments, greatly reduces the competition among DNA fragments for primers and polymerase thereby greatly reducing amplification bias. Consequently, the ddMDA approach enabled a more uniform coverage of amplification over the entire length of the genome, with significantly lower bias and non-specific amplification than conventional MDA. For a sample containing 0.1 pg/μL of E. coli DNA (equivalent of ~3/1000 of an E. coli genome per droplet), ddMDA achieves a 65-fold increase in coverage in de novo assembly, and more than 20-fold increase in specificity (percentage of reads mapping to E. coli) compared to the conventional tube MDA. ddMDA offers a powerful method useful for many applications including medical diagnostics, forensics, and environmental microbiology.

[1]  Paul D Adams,et al.  Pressure stabilizer for reproducible picoinjection in droplet microfluidic systems. , 2014, Lab on a chip.

[2]  Stephen R. Quake,et al.  Genome-wide Single-Cell Analysis of Recombination Activity and De Novo Mutation Rates in Human Sperm , 2012, Cell.

[3]  Alexander Sczyrba,et al.  Decontamination of MDA Reagents for Single Cell Whole Genome Amplification , 2011, PloS one.

[4]  C. Hutchison,et al.  Cell-free cloning using φ29 DNA polymerase , 2005 .

[5]  Roger S Lasken,et al.  Unbiased whole-genome amplification directly from clinical samples. , 2003, Genome research.

[6]  R. Lasken,et al.  Genomic DNA Amplification from a Single Bacterium , 2005, Applied and Environmental Microbiology.

[7]  Sallie W. Chisholm,et al.  Whole Genome Amplification and De novo Assembly of Single Bacterial Cells , 2009, PloS one.

[8]  A. Singh,et al.  Single cell genome sequencing. , 2012, Current opinion in biotechnology.

[9]  Marcy Yann,et al.  ヒト口腔からの微量の培養されないTM7微生物の単一細胞遺伝分析による生物学的「不明な物体」の詳細な分析 , 2007 .

[10]  S. Quake,et al.  Dissecting biological “dark matter” with single-cell genetic analysis of rare and uncultivated TM7 microbes from the human mouth , 2007, Proceedings of the National Academy of Sciences.

[11]  Angus M. Sidore,et al.  Enhanced sequencing coverage with digital droplet multiple displacement amplification , 2015, Nucleic acids research.

[12]  Daniel J. Nasko,et al.  Caught in the middle with multiple displacement amplification: the myth of pooling for avoiding multiple displacement amplification bias in a metagenome , 2014, Microbiome.

[13]  C. Hutchison,et al.  Cell-free cloning using phi29 DNA polymerase. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[14]  Björn Usadel,et al.  Trimmomatic: a flexible trimmer for Illumina sequence data , 2014, Bioinform..

[15]  Timothy B. Stockwell,et al.  Nanoliter Reactors Improve Multiple Displacement Amplification of Genomes from Single Cells , 2007, PLoS genetics.

[16]  Kun Zhang,et al.  Massively parallel polymerase cloning and genome sequencing of single cells using nanoliter microwells , 2013, Nature Biotechnology.

[17]  Rameen Beroukhim,et al.  Genome coverage and sequence fidelity of phi29 polymerase-based multiple strand displacement whole genome amplification. , 2004, Nucleic acids research.

[18]  C. Fuller,et al.  TempliPhi, phi29 DNA polymerase based rolling circle amplification of templates for DNA sequencing. , 2002, BioTechniques.

[19]  Aaron R. Quinlan,et al.  Bioinformatics Applications Note Genome Analysis Bedtools: a Flexible Suite of Utilities for Comparing Genomic Features , 2022 .

[20]  Peter J. Asiello,et al.  Miniaturized isothermal nucleic acid amplification, a review. , 2011, Lab on a chip.

[21]  Eoin L. Brodie,et al.  Environmental Whole-Genome Amplification To Access Microbial Populations in Contaminated Sediments , 2006, Applied and Environmental Microbiology.

[22]  Paul C. Blainey,et al.  Digital MDA for enumeration of total nucleic acid contamination , 2010, Nucleic acids research.

[23]  Roger S Lasken,et al.  Genomic DNA amplification by the multiple displacement amplification (MDA) method. , 2009, Biochemical Society transactions.

[24]  X. Xie,et al.  Genome-Wide Detection of Single-Nucleotide and Copy-Number Variations of a Single Human Cell , 2012, Science.

[25]  Charles Gawad,et al.  A Quantitative Comparison of Single-Cell Whole Genome Amplification Methods , 2014, PloS one.

[26]  F. Dean,et al.  Rapid amplification of plasmid and phage DNA using Phi 29 DNA polymerase and multiply-primed rolling circle amplification. , 2001, Genome research.

[27]  Jeremiah J Minich,et al.  Improved Multiple Displacement Amplification (iMDA) and Ultraclean Reagents , 2014, BMC Genomics.

[28]  A. Syvänen Toward genome-wide SNP genotyping , 2005, Nature Genetics.

[29]  Sijia Lu,et al.  Uniform and accurate single-cell sequencing based on emulsion whole-genome amplification , 2015, Proceedings of the National Academy of Sciences.

[30]  Yooli K Light,et al.  Versatile on-demand droplet generation for controlled encapsulation. , 2014, Biomicrofluidics.

[31]  Nicola K. Petty,et al.  BLAST Ring Image Generator (BRIG): simple prokaryote genome comparisons , 2011, BMC Genomics.

[32]  Sergey I. Nikolenko,et al.  SPAdes: A New Genome Assembly Algorithm and Its Applications to Single-Cell Sequencing , 2012, J. Comput. Biol..

[33]  Steven L Salzberg,et al.  Fast gapped-read alignment with Bowtie 2 , 2012, Nature Methods.

[34]  G. Church,et al.  Sequencing genomes from single cells by polymerase cloning , 2006, Nature Biotechnology.

[35]  Alexey A. Gurevich,et al.  QUAST: quality assessment tool for genome assemblies , 2013, Bioinform..

[36]  Daniel Pinkel,et al.  Whole genome analysis of genetic alterations in small DNA samples using hyperbranched strand displacement amplification and array-CGH. , 2003, Genome research.

[37]  Thierry Grange,et al.  An Efficient Multistrategy DNA Decontamination Procedure of PCR Reagents for Hypersensitive PCR Applications , 2010, PloS one.

[38]  Wendy S. Schackwitz,et al.  One Bacterial Cell, One Complete Genome , 2010, PloS one.

[39]  A. Hartmann,et al.  Multiple mutation analyses in single tumor cells with improved whole genome amplification. , 1999, The American journal of pathology.

[40]  L. Blanco,et al.  Fidelity of phi 29 DNA polymerase. Comparison between protein-primed initiation and DNA polymerization. , 1993, The Journal of biological chemistry.

[41]  Xize Niu,et al.  Building droplet-based microfluidic systems for biological analysis. , 2012, Biochemical Society transactions.

[42]  Cliff Han,et al.  Nearly finished genomes produced using gel microdroplet culturing reveal substantial intraspecies genomic diversity within the human microbiome , 2013, Genome research.

[43]  P. Lizardi,et al.  Mutation detection and single-molecule counting using isothermal rolling-circle amplification , 1998, Nature Genetics.