Integrable discretization of nonlinear Schrödinger equation and its application with Fourier pseudo-spectral method

A new integrable discretization of the nonlinear Schr¨odinger (NLS) equation is presented. Different from the one given by Ablowitz and Ladik, we discretize the time variable in this paper. The new discrete system converges to the NLS equation when we take a standard limit and has the same scattering operator as the original NLS equation. This indicates that both the new system and the NLS equation possess the same set of infinite conservation quantities. By applying the Fourier pseudo-spectral method to the space variable, we calculate the first five conservation quantities at different times. The numerical results indeed verify the conservation properties.

[1]  Mark J. Ablowitz,et al.  Nonlinear differential−difference equations , 1975 .

[2]  Jie Shen,et al.  Spectral and High-Order Methods with Applications , 2006 .

[3]  C. Schober,et al.  On the preservation of phase space structure under multisymplectic discretization , 2004 .

[4]  J. Nimmo,et al.  A bilinear Bäcklund transformation for the nonlinear Schrödinger equation , 1983 .

[5]  L. Debnath Solitons and the Inverse Scattering Transform , 2012 .

[6]  M. Ablowitz,et al.  Analytical and Numerical Aspects of Certain Nonlinear Evolution Equations , 1984 .

[7]  Ryogo Hirota,et al.  Nonlinear Partial Difference Equations III; Discrete Sine-Gordon Equation , 1977 .

[8]  Thiab R. Taha,et al.  Analytical and numerical aspects of certain nonlinear evolution equations. I. Analytical , 1984 .

[9]  L. Faddeev,et al.  Hirota equation as an example of an integrable symplectic map , 1994 .

[10]  Ablowitz,et al.  Numerically induced chaos in the nonlinear Schrödinger equation. , 1989, Physical review letters.

[11]  Christophe Besse,et al.  Order Estimates in Time of Splitting Methods for the Nonlinear Schrödinger Equation , 2002, SIAM J. Numer. Anal..

[12]  Georgios Akrivis,et al.  On optimal order error estimates for the nonlinear Schro¨dinger equation , 1993 .

[13]  P. Markowich,et al.  On time-splitting spectral approximations for the Schrödinger equation in the semiclassical regime , 2002 .

[14]  Yifa Tang,et al.  Symplectic and multi-symplectic methods for the nonlinear Schrodinger equation , 2002 .

[15]  G. R. W. Quispel,et al.  Linear integral equations and nonlinear difference-difference equations , 1984 .

[16]  Hon-Wah Tam,et al.  Integrable discretization of ‘time’ and its application on the Fourier pseudospectral method to the Korteweg–de Vries equation , 2014 .

[17]  G. R. W. Quispel,et al.  Linearizing integral transform and partial difference equations , 1984 .

[18]  Decio Levi,et al.  Integrable three-dimensional lattices , 1981 .

[19]  M. Ablowitz,et al.  Nonlinear differential–difference equations and Fourier analysis , 1976 .

[20]  A. B. Shabat,et al.  Interaction between solitons in a stable medium , 1973 .

[21]  N. Zabusky,et al.  Interaction of "Solitons" in a Collisionless Plasma and the Recurrence of Initial States , 1965 .

[22]  Lena Vogler,et al.  The Direct Method In Soliton Theory , 2016 .

[23]  D. J. Frantzeskakis,et al.  Dark solitons in atomic Bose–Einstein condensates: from theory to experiments , 2010, 1004.4071.

[24]  Akira Hasegawa,et al.  Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. I. Anomalous dispersion , 1973 .

[25]  Qianshun Chang,et al.  Difference Schemes for Solving the Generalized Nonlinear Schrödinger Equation , 1999 .

[26]  M. Boiti,et al.  Discrete Sine-Gordon Equation , 2003 .

[27]  広田 良吾,et al.  The direct method in soliton theory , 2004 .

[28]  W. Bao Numerical Methods for the Nonlinear Schrödinger Equation with Nonzero Far-field Conditions , 2004 .

[29]  Michio Jimbo,et al.  Method for Generating Discrete Soliton Equations. I , 1983 .

[30]  Georgios Akrivis,et al.  Finite difference discretization of the cubic Schrödinger equation , 1993 .

[31]  C. Schober,et al.  Geometric integrators for the nonlinear Schrödinger equation , 2001 .

[32]  Y. Suris The Problem of Integrable Discretization: Hamiltonian Approach , 2003 .

[33]  V. Zakharov,et al.  Exact Theory of Two-dimensional Self-focusing and One-dimensional Self-modulation of Waves in Nonlinear Media , 1970 .

[34]  J. Ladik,et al.  Generating exactly soluble nonlinear discrete evolution equations by a generalized Wronskian technique , 1977 .

[35]  Yuri S. Kivshar,et al.  Dark optical solitons: physics and applications , 1998 .

[36]  Georgios E. Zouraris,et al.  On the convergence of a linear two-step finite element method for the nonlinear Schrödinger equation , 2001 .

[37]  Mark J. Ablowitz,et al.  On homoclinic structure and numerically induced chaos for the nonlinear Schro¨dinger equation , 1990 .

[38]  D. Furihata,et al.  Dissipative or Conservative Finite Difference Schemes for Complex-Valued Nonlinear Partial Different , 2001 .

[39]  和達 三樹 M. J. Ablowitz and H. Segur: Solitons and the Inverse Scattering Transform, Society for Industrial and Applied Mathematics, Philadelphia, 1981, x+425ページ, 23.5×16.5cm, $54.40 (SIAM Studies in Applied Mathematics). , 1982 .

[40]  Bengt Fornberg,et al.  A practical guide to pseudospectral methods: Introduction , 1996 .

[41]  Ryogo Hirota,et al.  Nonlinear Partial Difference Equations. : I. A Difference Analogue of the Korteweg-de Vries Equation , 1977 .

[42]  Amherst Ma,et al.  Nonlinear Waves in Bose-Einstein Condensates: Physical Relevance and Mathematical Techniques , 2008 .

[43]  Karima R. Khusnutdinova,et al.  Nonlinear waves in integrable and nonintegrable systems (Mathematical Modeling and Computation 16) By Jianke Yang , 2015 .

[44]  Colin Rogers,et al.  Bäcklund transformations and their applications , 1982 .

[45]  C. Wieman,et al.  Observation of Bose-Einstein Condensation in a Dilute Atomic Vapor , 1995, Science.

[46]  Decio Levi,et al.  Nonlinear differential difference equations as Backlund transformations , 1981 .

[47]  D. Levi,et al.  Bäcklund transformations and nonlinear differential difference equations. , 1980, Proceedings of the National Academy of Sciences of the United States of America.

[48]  T. Taha,et al.  Analytical and numerical aspects of certain nonlinear evolution equations. II. Numerical, nonlinear Schrödinger equation , 1984 .

[49]  Jeremy Schiff,et al.  Loop groups and discrete KdV equations , 2002, nlin/0209040.

[50]  B. Herbst,et al.  Split-step methods for the solution of the nonlinear Schro¨dinger equation , 1986 .

[51]  John W. Miles,et al.  An Envelope Soliton Problem , 1981 .

[52]  Michel C. Delfour,et al.  Finite-difference solutions of a non-linear Schrödinger equation , 1981 .

[53]  L D Carr,et al.  Stability of stationary states in the cubic nonlinear Schrödinger equation: applications to the Bose-Einstein condensate. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.