Block Krylov Subspace Methods for Functions of Matrices II: Modified Block FOM
暂无分享,去创建一个
[1] J. Dennis,et al. On the Matrix Polynomial, Lambda-Matrix and Block Eigenvalue Problems , 1971 .
[2] Henry C. Thacher,et al. Applied and Computational Complex Analysis. , 1988 .
[3] Joseph F. Traub,et al. The Algebraic Theory of Matrix Polynomials , 1976 .
[4] Kenneth G. Wilson,et al. Quantum Chromodynamics on a Lattice , 1977 .
[5] Joseph F. Traub,et al. Algorithms for solvents of matrix polynomials , 1978 .
[6] D. O’Leary. The block conjugate gradient algorithm and related methods , 1980 .
[7] S. Eisenstat,et al. Variational Iterative Methods for Nonsymmetric Systems of Linear Equations , 1983 .
[8] Y. Saad,et al. GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .
[9] Y. Saad,et al. On the Lánczos method for solving symmetric linear systems with several right-hand sides , 1987 .
[10] L. Knizhnerman,et al. Two polynomial methods of calculating functions of symmetric matrices , 1991 .
[11] Y. Saad. Analysis of some Krylov subspace approximations to the matrix exponential operator , 1992 .
[12] Andreas Frommer,et al. MANY MASSES ON ONE STROKE: ECONOMIC COMPUTATION OF QUARK PROPAGATORS , 1995 .
[13] Andy A. Nikishin,et al. Variable Block CG Algorithms for Solving Large Sparse Symmetric Positive Definite Linear Systems on Parallel Computers, I: General Iterative Scheme , 1995, SIAM J. Matrix Anal. Appl..
[14] Efstratios Gallopoulos,et al. An Iterative Method for Nonsymmetric Systems with Multiple Right-Hand Sides , 1995, SIAM J. Sci. Comput..
[15] Henk A. van der Vorst,et al. Approximate solutions and eigenvalue bounds from Krylov subspaces , 1995, Numer. Linear Algebra Appl..
[16] Valeria Simoncini,et al. RITZ AND PSEUDO-RITZ VALUES USING MATRIX POLYNOMIALS , 1996 .
[17] V. Simoncini,et al. Convergence properties of block GMRES and matrix polynomials , 1996 .
[18] C. G. Broyden. A breakdown of the block CG method , 1996 .
[19] G. Starke. Field-of-values analysis of preconditioned iterative methods for nonsymmetric elliptic problems , 1997 .
[20] Herbert Neuberger. Exactly massless quarks on the lattice , 1998 .
[21] Andreas Frommer,et al. Restarted GMRES for Shifted Linear Systems , 1998, SIAM J. Sci. Comput..
[22] H. Sadok,et al. Global FOM and GMRES algorithms for matrix equations , 1999 .
[23] Jean-François Richard,et al. Methods of Numerical Integration , 2000 .
[24] Roland W. Freund,et al. A Lanczos-type method for multiple starting vectors , 2000, Math. Comput..
[25] A. Dubrulle,et al. Retooling the method of block conjugate gradients. , 2001 .
[26] Iain S. Duff,et al. An overview of the sparse basic linear algebra subprograms: The new standard from the BLAS technical forum , 2002, TOMS.
[27] Peter Lancaster,et al. Lambda-matrices and vibrating systems , 2002 .
[28] H. V. D. Vorst,et al. Numerical methods for the QCDd overlap operator. I. Sign-function and error bounds , 2002, hep-lat/0202025.
[29] Yousef Saad,et al. Iterative methods for sparse linear systems , 2003 .
[30] M. Gutknecht,et al. Block Krylov methods for Hermitian linear systems , 2004 .
[31] Khalide Jbilou,et al. The block Lanczos method for linear systems with multiple right-hand sides , 2004 .
[32] Philip I. Davies,et al. Computing f (A)b for matrix functions f , 2005 .
[33] M. Gutknecht. BLOCK KRYLOV SPACE METHODS FOR LINEAR SYSTEMS WITH MULTIPLE RIGHT-HAND SIDES : AN , 2005 .
[34] R. Morgan. Restarted block-GMRES with deflation of eigenvalues , 2005 .
[35] M. Heyouni,et al. Matrix Krylov subspace methods for linear systems with multiple right-hand sides , 2005, Numerical Algorithms.
[36] L. Trefethen,et al. Talbot quadratures and rational approximations , 2006 .
[37] H. Sadok,et al. Convergence properties of some block Krylov subspace methods for multiple linear systems , 2006 .
[38] J. A. C. Weideman,et al. Optimizing Talbot's Contours for the Inversion of the Laplace Transform , 2006, SIAM J. Numer. Anal..
[39] VALERIA SIMONCINI,et al. MATRIX FUNCTIONS , 2006 .
[40] V. Simoncini,et al. Preserving geometric properties of the exponential matrix by block Krylov subspace methods , 2006 .
[41] Eric de Sturler,et al. Recycling Krylov Subspaces for Sequences of Linear Systems , 2006, SIAM J. Sci. Comput..
[42] Oliver G. Ernst,et al. A Restarted Krylov Subspace Method for the Evaluation of Matrix Functions , 2006, SIAM J. Numer. Anal..
[43] Elizabeth R. Jessup,et al. On Improving Linear Solver Performance: A Block Variant of GMRES , 2005, SIAM J. Sci. Comput..
[44] N. Higham,et al. Computing A, log(A) and Related Matrix Functions by Contour Integrals , 2007 .
[45] Valeria Simoncini,et al. Recent computational developments in Krylov subspace methods for linear systems , 2007, Numer. Linear Algebra Appl..
[46] Lloyd N. Trefethen,et al. Parabolic and hyperbolic contours for computing the Bromwich integral , 2007, Math. Comput..
[47] Barry Simon,et al. The Analytic Theory of Matrix Orthogonal Polynomials , 2007, 0711.2703.
[48] Baojiang Zhong,et al. Simpler block GMRES for nonsymmetric systems with multiple right-hand sides. , 2008 .
[49] Nicholas J. Higham,et al. Functions of matrices - theory and computation , 2008 .
[50] M. Eiermann,et al. Implementation of a restarted Krylov subspace method for the evaluation of matrix functions , 2008 .
[51] N. Higham. Functions Of Matrices , 2008 .
[52] Lothar Reichel,et al. Error Estimates and Evaluation of Matrix Functions via the Faber Transform , 2009, SIAM J. Numer. Anal..
[53] H. Sadok,et al. ALGEBRAIC PROPERTIES OF THE BLOCK GMRES AND BLOCK ARNOLDI METHODS , 2009 .
[54] M. Gutknecht,et al. The block grade of a block Krylov space , 2009 .
[55] Klaus Schilling,et al. Numerical methods for the QCD overlap operator IV: Hybrid Monte Carlo , 2009, Comput. Phys. Commun..
[56] Valeria Simoncini,et al. A new investigation of the extended Krylov subspace method for matrix function evaluations , 2009, Numer. Linear Algebra Appl..
[57] Mark Hoemmen,et al. Communication-avoiding Krylov subspace methods , 2010 .
[58] M. Hochbruck,et al. Exponential integrators , 2010, Acta Numerica.
[59] I. Turner,et al. A restarted Lanczos approximation to functions of a symmetric matrix , 2010 .
[60] Awad H. Al-Mohy,et al. Computing the Action of the Matrix Exponential, with an Application to Exponential Integrators , 2011, SIAM J. Sci. Comput..
[61] Jing Zhao,et al. A new family of global methods for linear systems with multiple right-hand sides , 2011, J. Comput. Appl. Math..
[62] Timothy A. Davis,et al. The university of Florida sparse matrix collection , 2011, TOMS.
[63] Davod Khojasteh Salkuyeh,et al. On the global Krylov subspace methods for solving general coupled matrix equations , 2011, Comput. Math. Appl..
[64] Z. Strakos,et al. Krylov Subspace Methods: Principles and Analysis , 2012 .
[65] M. Ismail,et al. Spectral decomposition and matrix-valued orthogonal polynomials , 2012, 1206.4785.
[66] Gang Wu,et al. A Preconditioned and Shifted GMRES Algorithm for the PageRank Problem with Multiple Damping Factors , 2012, SIAM J. Sci. Comput..
[67] Peter K. Kitanidis,et al. A Flexible Krylov Solver for Shifted Systems with Application to Oscillatory Hydraulic Tomography , 2012, SIAM J. Sci. Comput..
[68] Kirk M. Soodhalter,et al. A block MINRES algorithm based on the band Lanczos method , 2013, Numerical Algorithms.
[69] Dejan Markovic,et al. A scalable sparse matrix-vector multiplication kernel for energy-efficient sparse-blas on FPGAs , 2014, FPGA.
[70] André Gaul,et al. Recycling Krylov subspace methods for sequences of linear systems , 2014 .
[71] Stefan Güttel,et al. Convergence of Restarted Krylov Subspace Methods for Stieltjes Functions of Matrices , 2014, SIAM J. Matrix Anal. Appl..
[72] Kirk M. Soodhalter,et al. Block Krylov Subspace Recycling for Shifted Systems with Unrelated Right-Hand Sides , 2016, SIAM J. Sci. Comput..
[73] Laura Grigori,et al. Enlarged Krylov Subspace Conjugate Gradient Methods for Reducing Communication , 2016, SIAM J. Matrix Anal. Appl..
[74] Khalide Jbilou,et al. On some properties of the extended block and global Arnoldi methods with applications to model reduction , 2016, Numerical Algorithms.
[75] Andreas Frommer,et al. On short recurrence Krylov type methods for linear systems with many right-hand sides , 2015, J. Comput. Appl. Math..
[76] Phillipp Kaestner,et al. Linear And Nonlinear Programming , 2016 .
[77] Peter Benner,et al. Frequency-Limited Balanced Truncation with Low-Rank Approximations , 2016, SIAM J. Sci. Comput..
[78] Michele Benzi,et al. Approximation of functions of large matrices with Kronecker structure , 2015, Numerische Mathematik.
[79] Chen Greif,et al. GMRES with multiple preconditioners , 2017 .
[80] Daniel B. Szyld,et al. The Radau-Lanczos Method for Matrix Functions , 2017, SIAM J. Matrix Anal. Appl..
[81] M. Schweitzer. Restarting and error estimation in polynomial and extended Krylov subspace methods for the approximation of matrix functions , 2018 .
[82] Daniel Kressner,et al. Low-rank updates of matrix functions , 2017, SIAM J. Matrix Anal. Appl..
[83] Sebastian Birk,et al. Deflated Shifted Block Krylov Subspace Methods for Hermitian Positive Definite Matrices , 2018 .
[84] Ting-Zhu Huang,et al. A block GMRES method with deflated restarting for solving linear systems with multiple shifts and multiple right‐hand sides , 2018, Numer. Linear Algebra Appl..
[85] Matrices , 2019, Numerical C.