Real-time rendering of translucent meshes

Subsurface scattering is important for photo-realistic rendering of translucent materials. We make approximations to the BSSRDF model and propose a simple lighting model to simulate the effects on translucent meshes. Our approximations are based on the observation that subsurface scattering is relatively local due to its exponential falloff.In the preprocessing stage we build subsurface scattering neighborhood information, which includes all the vertices within effective scattering range from each vertex. We then modify the traditional local illumination model into a run-time two-stage process. The first stage involves computation of reflection and transmission of light on surface vertices. The second stage bleeds in scattering effects from a vertex's neighborhood to generate the final result. We then merge the run-time two-stage process into a run-time single-stage process using precomputed integrals, and reduce the complexity of our run-time algorithm to O(N), where N is the number of vertices. The selection of the optimum set size for precomputed integrals is guided by a standard imagespace error-metric. Furthermore, we show how to compress the precomputed integrals using spherical harmonics. We compensate for the inadequacy of spherical harmonics for storing high frequency components by a reference points scheme to store high frequency components of the precomputed integrals explicitly. With this approach, we greatly reduce memory usage without loss of visual quality under a high-frequency lighting environment and achieve interactive frame rates for medium-sized scenes. Our model is able to capture the most important features of subsurface scattering: reflection and transmission due to multiple scattering.

[1]  Hans-Peter Seidel,et al.  Interactive rendering of translucent objects , 2002, 10th Pacific Conference on Computer Graphics and Applications, 2002. Proceedings..

[2]  Jan Kautz,et al.  Precomputed radiance transfer for real-time rendering in dynamic, low-frequency lighting environments , 2002 .

[3]  Pat Hanrahan,et al.  A signal-processing framework for inverse rendering , 2001, SIGGRAPH.

[4]  Dinesh Manocha,et al.  Simplification envelopes , 1996, SIGGRAPH.

[5]  Allen Gersho,et al.  Vector quantization and signal compression , 1991, The Kluwer international series in engineering and computer science.

[6]  Paul E. Debevec,et al.  Acquiring the reflectance field of a human face , 2000, SIGGRAPH.

[7]  Alan Edelman,et al.  Modeling and rendering of weathered stone , 1999, SIGGRAPH.

[8]  Pat Hanrahan,et al.  Reflection from layered surfaces due to subsurface scattering , 1993, SIGGRAPH.

[9]  John C. Hart,et al.  GPU algorithms for radiosity and subsurface scattering , 2003, HWWS '03.

[10]  Donald P. Greenberg,et al.  A comprehensive physical model for light reflection , 1991, SIGGRAPH.

[11]  Nelson L. Max,et al.  Bidirectional reflection functions from surface bump maps , 1987, SIGGRAPH.

[12]  Daniel Pletinckx,et al.  Quaternion calculus as a basic tool in computer graphics , 2005, The Visual Computer.

[13]  Steve Marschner,et al.  A practical model for subsurface light transport , 2001, SIGGRAPH.

[14]  Pat Hanrahan,et al.  Frequency space environment map rendering , 2002, SIGGRAPH.

[15]  Ezekiel Bahar,et al.  Full-Wave Theory Applied to Computer-Aided Graphics for 3D Objects , 1987, IEEE Computer Graphics and Applications.

[16]  Gregory J. Ward,et al.  Measuring and modeling anisotropic reflection , 1992, SIGGRAPH.

[17]  Greg Turk,et al.  Re-tiling polygonal surfaces , 1992, SIGGRAPH.

[18]  Mark S. Drew,et al.  Rendering Iridescent Colors of Optical Disks , 2000, Rendering Techniques.

[19]  Robert L Cook,et al.  A reflectance model for computer graphics , 1981, SIGGRAPH '81.

[20]  James T. Kajiya,et al.  Ray tracing volume densities , 1984, SIGGRAPH.

[21]  Paul Debevec,et al.  Inverse global illumination: Recovering re?ectance models of real scenes from photographs , 1998 .

[22]  James T. Kajiya,et al.  Anisotropic reflection models , 1985, SIGGRAPH.

[23]  Amitabh Varshney,et al.  Interactive subsurface scattering for translucent meshes , 2003, I3D '03.

[24]  Jos Stam,et al.  Diffraction shaders , 1999, SIGGRAPH.

[25]  Katsushi Ikeuchi,et al.  Object shape and reflectance modeling from observation , 1997, SIGGRAPH.

[26]  Peter Shirley,et al.  A microfacet-based BRDF generator , 2000, SIGGRAPH.

[27]  John Hart,et al.  ACM Transactions on Graphics , 2004, SIGGRAPH 2004.

[28]  Jos Stam,et al.  An Illumination Model for a Skin Layer Bounded by Rough Surfaces , 2001, Rendering Techniques.

[29]  Bui Tuong Phong Illumination for computer generated pictures , 1975, Commun. ACM.

[30]  David S. Ebert,et al.  Texturing and Modeling: A Procedural Approach , 1994 .

[31]  Ken Perlin,et al.  [Computer Graphics]: Three-Dimensional Graphics and Realism , 2022 .

[32]  James Arvo,et al.  A framework for realistic image synthesis , 1997, SIGGRAPH.

[33]  David S. Ebert,et al.  Texturing and Modeling , 1998 .

[34]  Julie Dorsey,et al.  Rendering of Wet Materials , 1999, Rendering Techniques.

[35]  Michael Garland,et al.  Surface simplification using quadric error metrics , 1997, SIGGRAPH.

[36]  Henrik Wann Jensen,et al.  A rapid hierarchical rendering technique for translucent materials , 2005, ACM Trans. Graph..

[37]  Peter-Pike J. Sloan,et al.  Clustered principal components for precomputed radiance transfer , 2003, ACM Trans. Graph..

[38]  Robert L. Cook,et al.  A Reflectance Model for Computer Graphics , 1987, TOGS.

[39]  Hugues Hoppe,et al.  Progressive meshes , 1996, SIGGRAPH.

[40]  Stephen H. Westin,et al.  A global illumination solution for general reflectance distributions , 1991, SIGGRAPH.

[41]  Marc Stamminger,et al.  Translucent Shadow Maps , 2003, Rendering Techniques.

[42]  Hans-Peter Seidel,et al.  Interactive Rendering of Translucent Deformable Objects , 2003, Rendering Techniques.

[43]  James F. Blinn,et al.  Models of light reflection for computer synthesized pictures , 1977, SIGGRAPH.

[44]  Henrik Wann Jensen,et al.  A rapid hierarchical rendering technique for translucent materials , 2005, SIGGRAPH Courses.

[45]  Stephen H. Westin,et al.  Predicting reflectance functions from complex surfaces , 1992, SIGGRAPH.

[46]  Andrea J. van Doorn,et al.  Shading in the case of translucent objects , 2001, IS&T/SPIE Electronic Imaging.

[47]  Ronen Basri,et al.  Lambertian reflectance and linear subspaces , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[48]  Steve Marschner,et al.  Image-Based BRDF Measurement Including Human Skin , 1999, Rendering Techniques.

[49]  Pat Hanrahan,et al.  Monte Carlo evaluation of non-linear scattering equations for subsurface reflection , 2000, SIGGRAPH.