Measuring the Heterogeneity of Treatment Effects with Multilevel Observational Data

Multilevel latent class analysis and mixture propensity score models have been implemented to account for heterogeneous selection mechanisms and for proper causal inference with observational multilevel data (Kim & Steiner in Quantitative Psychology Research. Springer, Cham, pp. 293–306, 2015). The scenarios imply the existence of multiple selection classes, and if class membership is unknown, homogeneous classes can be usually identified via multilevel logistic latent class models. Although latent class random-effects logistic models are frequently used, linear models and fixed-effects models can be alternatives for identifying multiple selection classes and estimating class-specific treatment effects (Kim & Suk in Specifying Multilevel Mixture Models in Propensity Score Analysis. International Meeting of Psychometric Society, New York, 2018). Using the Korea TIMSS 2015 eighth-grade student data, this study examined the potentially heterogeneous treatment effects of private science lessons by inspecting multiple selection classes (e.g., different motivations to receive the lessons) using four types of selection models: random-effects logistic, random-effects linear, fixed-effects logistic, and fixed-effects linear models. Implications of identifying selection classes in casual inference with multilevel assessment data are discussed.