The EBLM project III. A Saturn-size low-mass star at the hydrogen-burning limit

We report the discovery of an eclipsing binary system with mass-ratio q $\sim$ 0.07. After identifying a periodic photometric signal received by WASP, we obtained CORALIE spectroscopic radial velocities and follow-up light curves with the Euler and TRAPPIST telescopes. From a joint fit of these data we determine that EBLM J0555-57 consists of a sun-like primary star that is eclipsed by a low-mass companion, on a weakly eccentric 7.8-day orbit. Using a mass estimate for the primary star derived from stellar models, we determine a companion mass of $85 \pm 4 M_{\rm Jup}$ ($0.081M_{\odot}$) and a radius of $0.84^{+0.14}_{-0.04} R_{\rm Jup}$ ($0.084 R_{\odot}$) that is comparable to that of Saturn. EBLM J0555-57Ab has a surface gravity $\log g_\mathrm{2} = 5.50^{+0.03}_{-0.13}$ and is one of the densest non-stellar-remnant objects currently known. These measurements are consistent with models of low-mass stars.

[1]  C. S. Fernandes,et al.  A seven-planet resonant chain in TRAPPIST-1 , 2017, Nature Astronomy.

[2]  C. S. Fernandes,et al.  Seven temperate terrestrial planets around the nearby ultracool dwarf star TRAPPIST-1 , 2017, Nature.

[3]  David J Armstrong,et al.  EPIC 201702477b: A TRANSITING BROWN DWARF FROM K2 IN A 41 DAY ORBIT , 2016 .

[4]  S. Udry,et al.  Peculiar architectures for the WASP-53 and WASP-81 planet-hosting systems , 2016, 1612.04166.

[5]  Observatoire de la Côte d'Azur,et al.  Gaia Data Release 1. Summary of the astrometric, photometric, and survey properties , 2016, 1609.04172.

[6]  Nikole K. Lewis,et al.  A combined transmission spectrum of the Earth-sized exoplanets TRAPPIST-1 b and c , 2016, Nature.

[7]  P. Magain,et al.  Temperate Earth-sized planets transiting a nearby ultracool dwarf star , 2016, Nature.

[8]  P. Maxted ELLC - a fast, flexible light curve model for detached eclipsing binary stars and transiting exoplanets , 2016, 1603.08484.

[9]  Xavier Bonfils,et al.  A rocky planet transiting a nearby low-mass star , 2015, Nature.

[10]  Drake Deming,et al.  THE TRANSITING EXOPLANET SURVEY SATELLITE: SIMULATIONS OF PLANET DETECTIONS AND ASTROPHYSICAL FALSE POSITIVES , 2015, 1506.03845.

[11]  F. Allard,et al.  New evolutionary models for pre-main sequence and main sequence low-mass stars down to the hydrogen-burning limit , 2015, 1503.04107.

[12]  Spain.,et al.  Bayesian mass and age estimates for transiting exoplanet host stars , 2014, 1412.7891.

[13]  Observatoire de Haute-Provence,et al.  SOPHIE velocimetry of Kepler transit candidates XIII. KOI-189 b and KOI-686 b: two very low-mass stars in long-period orbits , 2014, 1410.5248.

[14]  Mauro Barbieri,et al.  Improving PARSEC models for very low mass stars , 2014, 1409.0322.

[15]  C. D. Laney,et al.  The EBLM project II. A very hot, low-mass M dwarf in an eccentric and long-period, eclipsing binary system from the SuperWASP Survey , 2014, 1408.6900.

[16]  C. Soubiran,et al.  Determining stellar atmospheric parameters and chemical abundances of FGK stars with iSpec , 2014, 1407.2608.

[17]  C. Petrovich STEADY-STATE PLANET MIGRATION BY THE KOZAI–LIDOV MECHANISM IN STELLAR BINARIES , 2014, 1405.0280.

[18]  S. Udry,et al.  Transiting planets from WASP-South, Euler, and TRAPPIST - WASP-68 b, WASP-73 b, and WASP-88 b, three hot Jupiters transiting evolved solar-type stars , 2013, 1312.1827.

[19]  J. Winters,et al.  THE SOLAR NEIGHBORHOOD. XXXII. THE HYDROGEN BURNING LIMIT, , 2013, 1312.1736.

[20]  Danzengluobu,et al.  TeV GAMMA-RAY SURVEY OF THE NORTHERN SKY USING THE ARGO-YBJ DETECTOR , 2013, 1311.3376.

[21]  E. Jehin,et al.  A Photometric Study of the Hot Exoplanet WASP-19b , 2012, 1212.3553.

[22]  K. Stassun,et al.  The EBLM project - I. Physical and orbital parameters, including spin-orbit angles, of two low-mass eclipsing binaries on opposite sides of the brown dwarf limit , 2012, 1208.4940.

[23]  M. Holman,et al.  IMPROVED SPECTROSCOPIC PARAMETERS FOR TRANSITING PLANET HOSTS , 2012, 1208.1268.

[24]  P. Quirion,et al.  Accurate fundamental parameters and detailed abundance patterns from spectroscopy of 93 solar-type Kepler targets , 2012 .

[25]  J. Pepper,et al.  KELT-1b: A STRONGLY IRRADIATED, HIGHLY INFLATED, SHORT PERIOD, 27 JUPITER-MASS COMPANION TRANSITING A MID-F STAR , 2012, 1206.1635.

[26]  R. G. West,et al.  WASP-42 b and WASP-49 b: two new transiting sub-Jupiters , 2012, 1205.2757.

[27]  Daniel Foreman-Mackey,et al.  emcee: The MCMC Hammer , 2012, 1202.3665.

[28]  A. Collier Cameron,et al.  The TRAPPIST survey of southern transiting planets. I. Thirty eclipses of the ultra-short period planet WASP-43 b , 2012, 1201.2789.

[29]  Jean Manfroid,et al.  TRAPPIST: TRAnsiting Planets and PlanetesImals Small Telescope , 2011 .

[30]  D. Queloz,et al.  TRAPPIST: a robotic telescope dedicated to the study of planetary systems , 2011, 1101.5807.

[31]  Howard Isaacson,et al.  LHS 6343 C: A TRANSITING FIELD BROWN DWARF DISCOVERED BY THE KEPLER MISSION , 2010, 1008.4141.

[32]  M. Asplund,et al.  The chemical composition of the Sun , 2009, 0909.0948.

[33]  J. Beuzit,et al.  Mass-radius relation of low and very low-mass stars revisited with the VLTI , 2009, 0906.0602.

[34]  A. Weiss,et al.  GARSTEC—the Garching Stellar Evolution Code , 2008 .

[35]  Kjell Eriksson,et al.  A grid of MARCS model atmospheres for late-type stars. I. Methods and general properties , 2008, 0805.0554.

[36]  Joshua N. Winn,et al.  The Transit Light Curve Project. IX. Evidence for a Smaller Radius of the Exoplanet XO-3b , 2008, 0804.4475.

[37]  R. G. West,et al.  Efficient identification of exoplanetary transit candidates from SuperWASP light curves , 2007, 0707.0417.

[38]  S. Tremaine,et al.  Submitted to ApJ Preprint typeset using L ATEX style emulateapj v. 10/09/06 SHRINKING BINARY AND PLANETARY ORBITS BY KOZAI CYCLES WITH TIDAL FRICTION , 2022 .

[39]  Mercedes Lopez-Morales,et al.  On the Correlation between the Magnetic Activity Levels, Metallicities, and Radii of Low-Mass Stars , 2007, astro-ph/0701702.

[40]  B. Enoch,et al.  The WASP Project and the SuperWASP Cameras , 2006, astro-ph/0608454.

[41]  Philip A. Ianna,et al.  The Solar Neighborhood. XVII. Parallax Results from the CTIOPI 0.9 m Program: 20 New Members of the RECONS 10 Parsec Sample , 2006, astro-ph/0608230.

[42]  A. Claret,et al.  A new non-linear limb-darkening law for LTE stellar atmosphere models III - Sloan filters: Calculations for –5.0 ≤ log [M/H] ≤ +1, 2000 K ≤ T$\mathsf{_{eff}}$ ≤ 50 000 K at several surface gravities , 2004 .

[43]  P. Maxted,et al.  Eclipsing binaries in open clusters – III. V621 Per in χ Persei , 2004, astro-ph/0409281.

[44]  G. Chabrier Galactic Stellar and Substellar Initial Mass Function , 2003, astro-ph/0304382.

[45]  Cyril Cavadore,et al.  HARPS: ESO's coming planet searcher. Chasing exoplanets with the La Silla 3.6-m telescope , 2002 .

[46]  D. Ségransan,et al.  First radius measurements of very low mass stars with the VLTI , 2002, astro-ph/0211647.

[47]  P. Kroupa On the variation of the initial mass function , 2000, astro-ph/0009005.

[48]  Christopher J. Corbally,et al.  The calibration of MK spectral classes using spectral synthesis. 1: The effective temperature calibration of dwarf stars , 1994 .

[49]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[50]  M. J. Shallis,et al.  Stellar angular diameters from infrared photometry. Application to Arcturus and other stars; with effective temperatures. , 1977 .

[51]  L. B. Lucy,et al.  Spectroscopic binaries with circular orbits , 1973 .

[52]  Yoshihide Kozai,et al.  Secular perturbations of asteroids with high inclination and eccentricity , 1962 .