Harvesting fresh water and marine algae by magnetic separation: screening of separation parameters and high gradient magnetic filtration.

In this study, the focus is on magnetic separation of fresh water algae Chlamydomonas reinhardtii and Chlorella vulgaris as well as marine algae Phaeodactylum tricornutum and Nannochloropsis salina by means of silica-coated magnetic particles. Due to their small size and low biomass concentrations, harvesting algae by conventional methods is often inefficient and cost-consuming. Magnetic separation is a powerful tool to capture algae by adsorption to submicron-sized magnetic particles. Hereby, separation efficiency depends on parameters such as particle concentration, pH and medium composition. Separation efficiencies of >95% were obtained for all algae while maximum particle loads of 30 and 77 g/g were measured for C. reinhardtii and P. tricornutum at pH 8 and 12, respectively. This study highlights the potential of silica-coated magnetic particles for the removal of fresh water and marine algae by high gradient magnetic filtration and provides critical discussion on future improvements.

[1]  I. Perner-Nochta,et al.  Photoautotrophic Cell and Tissue Culture in a Tubular Photobioreactor , 2007 .

[2]  C. Posten,et al.  Relationship between light intensity and morphology of the moss Physcomitrella patens in a draft tube photo bioreactor , 2012 .

[3]  R. Frank,et al.  Generation of the heterodimeric precursor GP3 of the Chlamydomonas cell wall , 2010, Molecular microbiology.

[4]  Retracted:Efficient separation ofNannochloropsis salinausing minerals to optimize algae sedimentation , 2012 .

[5]  C. Catalanotti,et al.  Mutagenesis and phenotypic selection as a strategy toward domestication of Chlamydomonas reinhardtii strains for improved performance in photobioreactors , 2011, Photosynthesis Research.

[6]  B. Bijsterbosch,et al.  Adsorption of cationic surfactants on silica. Surface charge effects. , 1996 .

[7]  E. H. Harris The Chlamydomonas sourcebook , 2009 .

[8]  C. Hagen,et al.  Ultrastructural and chemical changes in the cell wall of Haematococcus pluvialis (Volvocales, Chlorophyta) during aplanospore formation , 2002 .

[9]  O. Kruse,et al.  The Nucleus-encoded Protein MOC1 Is Essential for Mitochondrial Light Acclimation in Chlamydomonas reinhardtii* , 2004, Journal of Biological Chemistry.

[10]  Matthias Franzreb,et al.  Protein purification using magnetic adsorbent particles , 2006, Applied Microbiology and Biotechnology.

[11]  J. E. Mann,et al.  ON PIGMENTS, GROWTH, AND PHOTOSYNTHESIS OF PHAEODACTYLUM TRICORNUTUM 1 2 , 1968, Journal of phycology.

[12]  David Erickson,et al.  Zeta-potential measurement using the Smoluchowski equation and the slope of the current-time relationship in electroosmotic flow. , 2003, Journal of colloid and interface science.

[13]  Michael R. Ladisch,et al.  Bioseparations Engineering: Principles, Practice, and Economics , 2001 .

[14]  M. Gretz,et al.  DIATOM EXTRACELLULAR POLYMERIC SUBSTANCES: FUNCTION, FINE STRUCTURE, CHEMISTRY, AND PHYSIOLOGY , 1993 .

[15]  Clemens Posten,et al.  In situ magnetic separation for extracellular protein production , 2009, Biotechnology and bioengineering.

[16]  Andreas Hartwig,et al.  Magnetic and rheological characterization of novel ferrofluids , 2005 .

[17]  M. Affenzeller,et al.  Salt stress-induced cell death in the unicellular green alga Micrasterias denticulata , 2009, Journal of experimental botany.

[18]  Clemens Posten,et al.  Design principles of photo‐bioreactors for cultivation of microalgae , 2009 .

[19]  Clemens Posten,et al.  Die vielfältige Anwendung von Mikroalgen als nachwachsende Rohstoffe , 2010 .

[20]  M. Borowitzka,et al.  THE POLYMORPHIC DIATOM PHAEODACTYLUM TRICORNUTUM: ULTRASTRUCTURE OF ITS MORPHOTYPES 1, 2 , 1978 .

[21]  Andrew Hoadley,et al.  Dewatering of microalgal cultures : a major bottleneck to algae-based fuels , 2010 .

[22]  Michael A. Borowitzka,et al.  Micro-algal biotechnology. , 1988 .

[23]  G. Belfort,et al.  Algae removal by high gradient magnetic filtration , 1977 .

[24]  A. Walsby,et al.  Sinking velocities of phytoplankton measured on a stable density gradient by laser scanning , 2006, Journal of The Royal Society Interface.

[25]  M. Franzreb Magnettechnologie in der Verfahrenstechnik wässriger Medien , 2003 .

[26]  A. Sukenik,et al.  Algal autoflocculation—verification and proposed mechanism , 1984, Biotechnology and bioengineering.

[27]  Raymond F. Jones,et al.  Studies on the Growth of the Red Alga Porphyridium cruentum , 1963 .

[28]  J. Xing,et al.  In situ magnetic separation and immobilization of dibenzothiophene-desulfurizing bacteria. , 2009, Bioresource technology.

[29]  T. Lasheen,et al.  Chemical composition of the cell wall in some green algae species , 1993, Biologia Plantarum.

[30]  Ling Xu,et al.  A simple and rapid harvesting method for microalgae by in situ magnetic separation. , 2011, Bioresource technology.

[31]  O. Thomas,et al.  High-gradient magnetic affinity separation of trypsin from porcine pancreatin. , 2002, Biotechnology and bioengineering.

[32]  I. Safarik,et al.  Magnetic nano- and microparticles in biotechnology , 2009 .