Flexible, Stretchable, and Biodegradable Thin-Film Silicon Photovoltaics

This chapter provides an overview of recent progress in the study of thin-film Si photovoltaic (PV) technologies, specifically devices in flexible, stretchable, and/or degradable formats for biomedical applications. First, various approaches for synthesis, fabrication, and assembly of different types of thin-film Si PV cells, ranging from amorphous Si, microcrystalline Si to single-crystalline Si cells, are reviewed. Performances of various cells are also discussed. Materials selection and mechanical considerations are presented, both analytically and numerically, for achieving design flexible and stretchable Si PV cells for lightweight, wearable, and/or implantable light detection and energy harvesting systems. Finally, strategies to form thin-film Si PV cells in a water-soluble and biodegradable “transient” format for bio-integration are discussed. Because of these novel characteristics, thin-film Si PV cells offer a promising solution for energy supply in emerging biomedical applications.

[1]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[2]  Huanyu Cheng,et al.  Dissolution Behaviors and Applications of Silicon Oxides and Nitrides in Transient Electronics , 2014 .

[3]  John A. Rogers,et al.  Silicon micro-masonry using elastomeric stamps for three-dimensional microfabrication , 2012 .

[4]  X. Sheng,et al.  Photonic crystal structures for light trapping in thin-film Si solar cells: Modeling, process and optimizations , 2014 .

[5]  J. Rogers,et al.  Silk-based resorbable electronic devices for remotely controlled therapy and in vivo infection abatement , 2014, Proceedings of the National Academy of Sciences.

[6]  John A Rogers,et al.  Ultrathin silicon solar microcells for semitransparent, mechanically flexible and microconcentrator module designs. , 2008, Nature materials.

[7]  Huanyu Cheng,et al.  A Physically Transient Form of Silicon Electronics , 2012, Science.

[8]  Jef Poortmans,et al.  Thin Film Solar Cells: Fabrication, Characterization and Applications , 2006 .

[9]  J. Rogers,et al.  Synthesis, assembly and applications of semiconductor nanomembranes , 2011, Nature.

[10]  Kimihiko Saito,et al.  High‐efficiency thin‐film silicon solar cells with improved light‐soaking stability , 2013 .

[11]  Huanyu Cheng,et al.  Dissolution chemistry and biocompatibility of silicon- and germanium-based semiconductors for transient electronics. , 2015, ACS applied materials & interfaces.

[12]  John A Rogers,et al.  Triggered Transience of Metastable Poly(phthalaldehyde) for Transient Electronics , 2014, Advanced materials.

[13]  Rosaria Ciriminna,et al.  Flexible solar cells. , 2008, ChemSusChem.

[14]  Yonggang Huang,et al.  Dissolvable Metals for Transient Electronics , 2014 .

[15]  Davood Shahrjerdi,et al.  Extremely flexible nanoscale ultrathin body silicon integrated circuits on plastic. , 2013, Nano letters.

[16]  John A. Rogers,et al.  Biodegradable Thin Metal Foils and Spin‐On Glass Materials for Transient Electronics , 2015 .

[17]  Diego Fischer,et al.  Microcrystalline silicon and micromorph tandem solar cells , 1999 .

[18]  Huanyu Cheng,et al.  25th Anniversary Article: Materials for High‐Performance Biodegradable Semiconductor Devices , 2014, Advanced materials.

[19]  Soo-Hyun Kim,et al.  Remarkable progress in thin-film silicon solar cells using high-efficiency triple-junction technology , 2013 .

[20]  Yei Hwan Jung,et al.  Injectable, Cellular-Scale Optoelectronics with Applications for Wireless Optogenetics , 2013, Science.

[21]  Martin A. Green,et al.  Solar cell efficiency tables (version 46) , 2015 .

[22]  Audrey M. Bowen,et al.  Transfer Printing Techniques for Materials Assembly and Micro/Nanodevice Fabrication , 2012, Advanced materials.

[23]  Yonggang Huang,et al.  Ultrathin conformal devices for precise and continuous thermal characterization of human skin. , 2013, Nature materials.

[24]  Chueh-Yang Liu,et al.  Hydrogenated amorphous silicon–germanium thin films with a narrow band gap for silicon-based solar cells , 2011 .

[25]  Maarten Debucquoy,et al.  Improving the Quality of Epitaxial Foils Produced Using a Porous Silicon-based Layer Transfer Process for High-Efficiency Thin-Film Crystalline Silicon Solar Cells , 2014, IEEE Journal of Photovoltaics.

[26]  Heung Cho Ko,et al.  A hemispherical electronic eye camera based on compressible silicon optoelectronics , 2008, Nature.

[27]  Yonggang Huang,et al.  Materials and noncoplanar mesh designs for integrated circuits with linear elastic responses to extreme mechanical deformations , 2008, Proceedings of the National Academy of Sciences.

[28]  M. Zeman,et al.  Amorphous and Microcrystalline Silicon Solar Cells: Modeling, Materials and Device Technology , 1998 .

[29]  Xiaolin Zheng,et al.  Peel-and-Stick: Fabricating Thin Film Solar Cell on Universal Substrates , 2012, Scientific Reports.

[30]  Yonggang Huang,et al.  Dissolution chemistry and biocompatibility of single-crystalline silicon nanomembranes and associated materials for transient electronics. , 2014, ACS nano.

[31]  Jae-Woong Jeong,et al.  Materials and Fabrication Processes for Transient and Bioresorbable High‐Performance Electronics , 2013 .

[32]  Shanhui Fan,et al.  Large-area free-standing ultrathin single-crystal silicon as processable materials. , 2013, Nano letters.