Quantification and evaluation of thymoquinone loaded mucoadhesive nanoemulsion for treatment of cerebral ischemia.

[1]  Rodolfo Teófilo Protoplasma , 2018, Alexandria: Revista de Educação em Ciência e Tecnologia.

[2]  H. Ahmad,et al.  Neuro-protective potential of a vesicular system of a standardized extract of a new chemotype of Withania somnifera Dunal (NMITLI118RT+) against cerebral stroke in rats* , 2016, Drug delivery.

[3]  Omboon Vallisuta,et al.  Drug Discovery and Development - From Molecules to Medicine , 2015 .

[4]  F. Ahmad,et al.  Quantification of curcumin, demethoxycurcumin, and bisdemethoxycurcumin in rodent brain by UHPLC/ESI-Q-TOF-MS/MS after intra-nasal administration of curcuminoids loaded PNIPAM nanoparticles. , 2014, Drug testing and analysis.

[5]  F. Hu,et al.  A novel subcutaneous infusion delivery system based on osmotic pump: in vitro and in vivo evaluation , 2014, Drug delivery.

[6]  F. Ahmad,et al.  A comparative study of PNIPAM nanoparticles of curcumin, demethoxycurcumin, and bisdemethoxycurcumin and their effects on oxidative stress markers in experimental stroke , 2013, Protoplasma.

[7]  G. Mustafa,et al.  Bromocriptine loaded chitosan nanoparticles intended for direct nose to brain delivery: pharmacodynamic, pharmacokinetic and scintigraphy study in mice model. , 2013, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[8]  R. Abu-Dahab,et al.  Thymoquinone in liposomes: a study of loading efficiency and biological activity towards breast cancer , 2012, Drug delivery.

[9]  A. Omar,et al.  Cationized dextran nanoparticle-encapsulated CXCR4 -siRNA enhanced correlation between CXCR4 expression and serum alkaline phosphatase in a mouse model of colorectal cancer , 2012 .

[10]  D. Mcclements,et al.  Nanoemulsion-based delivery systems for poorly water-soluble bioactive compounds: Influence of formulation parameters on Polymethoxyflavone crystallization. , 2012, Food hydrocolloids.

[11]  Ajmal Ahmad,et al.  S-allyl cysteine mitigates oxidative damage and improves neurologic deficit in a rat model of focal cerebral ischemia. , 2012, Nutrition research.

[12]  K. Sawant,et al.  Development and evaluation of olanzapine-loaded PLGA nanoparticles for nose-to-brain delivery: in vitro and in vivo studies. , 2011, Acta biomaterialia.

[13]  P. Turner,et al.  Administration of substances to laboratory animals: routes of administration and factors to consider. , 2011, Journal of the American Association for Laboratory Animal Science : JAALAS.

[14]  R. Müller,et al.  Polyhydroxy surfactants for the formulation of lipid nanoparticles (SLN and NLC): effects on size, physical stability and particle matrix structure. , 2011, International journal of pharmaceutics.

[15]  I. Warner,et al.  Delivery of phytochemical thymoquinone using molecular micelle modified poly(D, L lactide-co-glycolide) (PLGA) nanoparticles , 2010, Nanotechnology.

[16]  W. Frey,et al.  Intranasal delivery to the central nervous system: mechanisms and experimental considerations. , 2010, Journal of pharmaceutical sciences.

[17]  Lisbeth Illum,et al.  Nanoparticles for direct nose-to-brain delivery of drugs. , 2009, International journal of pharmaceutics.

[18]  L. Hanson,et al.  Intranasal delivery bypasses the blood-brain barrier to target therapeutic agents to the central nervous system and treat neurodegenerative disease , 2008, BMC Neuroscience.

[19]  Xing Tang,et al.  Preparation of estradiol chitosan nanoparticles for improving nasal absorption and brain targeting. , 2008, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[20]  D. Vohora,et al.  Effect of thioperamide on oxidative stress markers in middle cerebral artery occlusion model of focal cerebral ischemia in rats , 2008, Human & experimental toxicology.

[21]  R. Misra,et al.  Biomaterials , 2008 .

[22]  A. Babbar,et al.  Intranasal nanoemulsion based brain targeting drug delivery system of risperidone. , 2008, International journal of pharmaceutics.

[23]  J. Benoit,et al.  Design and production of nanoparticles formulated from nano-emulsion templates-a review. , 2008, Journal of controlled release : official journal of the Controlled Release Society.

[24]  Tushar K. Vyas,et al.  Improved oral bioavailability and brain transport of Saquinavir upon administration in novel nanoemulsion formulations. , 2008, International journal of pharmaceutics.

[25]  H. Sadeghnia,et al.  Effect of thymoquinone and Nigella sativa seeds oil on lipid peroxidation level during global cerebral ischemia-reperfusion injury in rat hippocampus. , 2007, Phytomedicine : international journal of phytotherapy and phytopharmacology.

[26]  S. Baboota,et al.  Design, development and evaluation of novel nanoemulsion formulations for transdermal potential of celecoxib , 2007, Acta pharmaceutica.

[27]  A. Al-Majed,et al.  Neuroprotective effects of thymoquinone against transient forebrain ischemia in the rat hippocampus. , 2006, European journal of pharmacology.

[28]  A. Serajuddin,et al.  Effect of combined use of nonionic surfactant on formation of oil-in-water microemulsions. , 2005, International journal of pharmaceutics.

[29]  Wei Yang Lu,et al.  Preparation of nimodipine-loaded microemulsion for intranasal delivery and evaluation on the targeting efficiency to the brain. , 2004, International journal of pharmaceutics.

[30]  J. Dunlop,et al.  Bioaccumulation potential of surfactants: A review , 2002 .

[31]  S. Chi,et al.  Transdermal delivery of ketoprofen using microemulsions. , 2001, International journal of pharmaceutics.

[32]  J. Hadgraft,et al.  Modulation of the Barrier Function of the Skin , 2001, Skin Pharmacology and Physiology.

[33]  M. Lawrence,et al.  Microemulsion-based media as novel drug delivery systems , 2000 .

[34]  H. Goel,et al.  Evaluation of (99m)Tc-labeled photosan-3, a hematoporphyrin derivative, as a potential radiopharmaceutical for tumor scintigraphy. , 2000, Nuclear medicine and biology.

[35]  S. Tenjarla,et al.  Microbiological and HPLC analysis of miconazole in skin, serum and phase‐solubility studies , 1999, Journal of clinical pharmacy and therapeutics.

[36]  V. Dodane,et al.  Effect of chitosan on epithelial permeability and structure. , 1999, International journal of pharmaceutics.

[37]  S. Hoyer,et al.  Intracerebroventricular administration of streptozotocin causes long-term diminutions in learning and memory abilities and in cerebral energy metabolism in adult rats. , 1998, Behavioral neuroscience.

[38]  H. Ellis stroke , 1997, The Lancet.

[39]  J. Mason,et al.  THE NASAL DELIVERY OF SYSTEMIC DRUGS , 1997, International journal of clinical practice.

[40]  M. Moskowitz,et al.  Nitric Oxide Synthase Inhibition and Cerebrovascular Regulation , 1994, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[41]  B. Siesjö,et al.  Acidosis Induced by Hypercapnia Exaggerates Ischemic Brain Damage , 1994, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[42]  T. Kayama,et al.  Chemiluminescence in Hypoxic Brain - The First Report: Correlation Between Energy Metabolism and Free Radical Reaction , 1984, Stroke.

[43]  J. Benoit,et al.  Long-circulating DNA lipid nanocapsules as new vector for passive tumor targeting. , 2010, Biomaterials.

[44]  P. Weinstein,et al.  Reversible middle cerebral artery occlusion without craniectomy in rats. , 1989, Stroke.

[45]  Nikolaos A. Peppas,et al.  Pharmaceutical and Medical Aspects of Bioadhesive Systems for Drug Administration , 1988 .