Layered Germanium Hybrid Perovskite Bromides: Insights from Experiments and First‐Principles Calculations

Metal halide perovskites are maturing as materials for efficient, yet low cost solar cells and light‐emitting diodes, with improving operational stability and reliability. To date however, most perovskite‐based devices contain Pb, which poses environmental concerns due to its toxicity; lead‐free alternatives are of importance to facilitate the development of perovskite‐based devices. Here, the germanium‐based Ruddledsen–Popper series (CH3(CH2)3NH3)2(CH3NH3)n−1GenBr3n+1 is investigated, derived from the parent 3D (n = ∞) CH3NH3GeBr3 perovskite. Divalent germanium is a promising, nontoxic alternative to Pb2+ and the layered, 2D structure appears promising to bolster light emission, long‐term durability, and moisture tolerance. The work, which combines experiments and first principle calculations, highlights that in germanium bromide perovskites the optical bandgap is weakly affected by 2D confinement and the highly stereochemically active 4s2 lone pair preludes to possible ferroelectricity, a topic still debated in Pb‐containing compounds.

[1]  H. Snaith,et al.  The Path to Perovskite on Silicon PV , 2018, Scientific Video Protocols.

[2]  Christopher J. Tassone,et al.  Scalable Fabrication of Perovskite Solar Cells to Meet Climate Targets , 2018, Joule.

[3]  G. Gigli,et al.  Ultra-Bright Near-Infrared Perovskite Light-Emitting Diodes with Reduced Efficiency Roll-off , 2018, Scientific Reports.

[4]  X. Liang,et al.  Solvent Engineering Improves Efficiency of Lead-Free Tin-Based Hybrid Perovskite Solar Cells beyond 9% , 2018, ACS Energy Letters.

[5]  M. Kanatzidis,et al.  “Unleaded” Perovskites: Status Quo and Future Prospects of Tin‐Based Perovskite Solar Cells , 2018, Advanced materials.

[6]  L. Quan,et al.  Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent , 2018, Nature.

[7]  Sang Hwa Moon,et al.  Roles of SnX2 (X = F, Cl, Br) Additives in Tin-Based Halide Perovskites toward Highly Efficient and Stable Lead-Free Perovskite Solar Cells. , 2018, The journal of physical chemistry letters.

[8]  Jasmine P. H. Rivett,et al.  Solution-processed perovskite light emitting diodes with efficiency exceeding 15% through additive-controlled nanostructure tailoring , 2018, Nature Communications.

[9]  Edward H. Sargent,et al.  Challenges for commercializing perovskite solar cells , 2018, Science.

[10]  Yuanhui Sun,et al.  Rational Design of Halide Double Perovskites for Optoelectronic Applications , 2018, Joule.

[11]  Liyan Yu,et al.  Highly Efficient Ruddlesden–Popper Halide Perovskite PA2MA4Pb5I16 Solar Cells , 2018, ACS Energy Letters.

[12]  T. Qiu,et al.  Highly Efficient and Stable Solar Cells with 2D MA3Bi2I9/3D MAPbI3 Heterostructured Perovskites , 2018 .

[13]  Liang Ma,et al.  Toward Eco-friendly and Stable Perovskite Materials for Photovoltaics , 2018, Joule.

[14]  M. Nazeeruddin,et al.  Hysteresis-Free Lead-Free Double-Perovskite Solar Cells by Interface Engineering , 2018, ACS Energy Letters.

[15]  N. Kosugi,et al.  Highly Efficient 2D/3D Hybrid Perovskite Solar Cells via Low‐Pressure Vapor‐Assisted Solution Process , 2018, Advanced materials.

[16]  J. Scott,et al.  Ferroelectrics, multiferroics and artifacts: Lozenge-shaped hysteresis and things that go bump in the night , 2018, Materials Today.

[17]  M. Loi,et al.  Unravelling Light‐Induced Degradation of Layered Perovskite Crystals and Design of Efficient Encapsulation for Improved Photostability , 2018 .

[18]  N. Park,et al.  Methodologies toward Highly Efficient Perovskite Solar Cells. , 2018, Small.

[19]  Henry J Snaith,et al.  Present status and future prospects of perovskite photovoltaics , 2018, Nature Materials.

[20]  Hui Bian,et al.  3D–2D–0D Interface Profiling for Record Efficiency All‐Inorganic CsPbBrI2 Perovskite Solar Cells with Superior Stability , 2018 .

[21]  Weiqiao Deng,et al.  Lead-Free, Two-Dimensional Mixed Germanium and Tin Perovskites. , 2018, The journal of physical chemistry letters.

[22]  Peng Gao,et al.  High-efficiency perovskite–polymer bulk heterostructure light-emitting diodes , 2018, 1804.09785.

[23]  Feng Gao,et al.  Organic-Inorganic Hybrid Ruddlesden-Popper Perovskites: An Emerging Paradigm for High-Performance Light-Emitting Diodes. , 2018, The journal of physical chemistry letters.

[24]  N. Park,et al.  Simultaneous Improvement of Photovoltaic Performance and Stability by In Situ Formation of 2D Perovskite at (FAPbI3)0.88(CsPbBr3)0.12/CuSCN Interface , 2018 .

[25]  Kai Zhu,et al.  Scalable fabrication of perovskite solar cells , 2018 .

[26]  Takashi Minemoto,et al.  Mixed Sn-Ge Perovskite for Enhanced Perovskite Solar Cell Performance in Air. , 2018, The journal of physical chemistry letters.

[27]  Joo Sung Kim,et al.  High-Efficiency Polycrystalline Perovskite Light-Emitting Diodes Based on Mixed Cations. , 2018, ACS nano.

[28]  S. Ogale,et al.  Lead-Free Perovskite Semiconductors Based on Germanium–Tin Solid Solutions: Structural and Optoelectronic Properties , 2018 .

[29]  Qiang Guo,et al.  Minimising efficiency roll-off in high-brightness perovskite light-emitting diodes , 2018, Nature Communications.

[30]  Jinxiang Deng,et al.  Efficient green light-emitting diodes based on quasi-two-dimensional composition and phase engineered perovskite with surface passivation , 2018, Nature Communications.

[31]  M. Loi,et al.  Highly Reproducible Sn‐Based Hybrid Perovskite Solar Cells with 9% Efficiency , 2018 .

[32]  T. Rath,et al.  Enhanced Performance of Germanium Halide Perovskite Solar Cells through Compositional Engineering , 2018 .

[33]  Antonio Abate,et al.  Perovskite Solar Cells Go Lead Free , 2017 .

[34]  Adolf Acquaye,et al.  Perovskite solar cells: An integrated hybrid lifecycle assessment and review in comparison with other photovoltaic technologies , 2017 .

[35]  Henry J. Snaith,et al.  Metal halide perovskite tandem and multiple-junction photovoltaics , 2017 .

[36]  T. Buonassisi,et al.  Promises and challenges of perovskite solar cells , 2017, Science.

[37]  Kai Zhu,et al.  Perovskite Photovoltaics: The Path to a Printable Terawatt-Scale Technology , 2017 .

[38]  M. Heben,et al.  Environmental analysis of perovskites and other relevant solar cell technologies in a tandem configuration , 2017 .

[39]  Weiqiao Deng,et al.  (C6H5C2H4NH3)2GeI4: A Layered Two-Dimensional Perovskite with Potential for Photovoltaic Applications. , 2017, The journal of physical chemistry letters.

[40]  Biwu Ma,et al.  Low-Dimensional Organic Tin Bromide Perovskites and Their Photoinduced Structural Transformation. , 2017, Angewandte Chemie.

[41]  K. Prabakar,et al.  Interplay between Iodide and Tin Vacancies in CsSnI3 Perovskite Solar Cells , 2017 .

[42]  Y. Kanemitsu,et al.  Photocarrier Recombination and Injection Dynamics in Long-Term Stable Lead-Free CH3NH3SnI3 Perovskite Thin Films and Solar Cells , 2017 .

[43]  Chunhui Huang,et al.  Mixed‐Organic‐Cation Tin Iodide for Lead‐Free Perovskite Solar Cells with an Efficiency of 8.12% , 2017, Advanced science.

[44]  J. Buriak,et al.  Lead-Free Perovskite Solar Cells , 2017 .

[45]  O. Voznyy,et al.  High-Throughput Screening of Lead-Free Perovskite-like Materials for Optoelectronic Applications , 2017 .

[46]  D. Oron,et al.  Tetragonal CH3NH3PbI3 is ferroelectric , 2017, Proceedings of the National Academy of Sciences.

[47]  Yu-Ju Chuang,et al.  Synthesis and Optical Properties of Lead-Free Cesium Tin Halide Perovskite Quantum Rods with High-Performance Solar Cell Application. , 2016, The journal of physical chemistry letters.

[48]  F. Giustino,et al.  Cs2InAgCl6: A New Lead-Free Halide Double Perovskite with Direct Band Gap. , 2016, The journal of physical chemistry letters.

[49]  Kai Zhu,et al.  Towards stable and commercially available perovskite solar cells , 2016, Nature Energy.

[50]  P. Umari,et al.  Electronic and optical properties of MAPbX3 perovskites (X = I, Br, Cl): a unified DFT and GW theoretical analysis. , 2016, Physical chemistry chemical physics : PCCP.

[51]  Oleksandr Voznyy,et al.  Perovskite energy funnels for efficient light-emitting diodes. , 2016, Nature nanotechnology.

[52]  Yanfa Yan,et al.  Lead‐Free Inverted Planar Formamidinium Tin Triiodide Perovskite Solar Cells Achieving Power Conversion Efficiencies up to 6.22% , 2016, Advanced materials.

[53]  F. Giustino,et al.  Band Gaps of the Lead-Free Halide Double Perovskites Cs2BiAgCl6 and Cs2BiAgBr6 from Theory and Experiment. , 2016, The journal of physical chemistry letters.

[54]  T. Bendikov,et al.  CH3NH3PbBr3 is not pyroelectric, excluding ferroelectric-enhanced photovoltaic performance , 2016 .

[55]  D. J. Clark,et al.  Ruddlesden-Popper Hybrid Lead Iodide Perovskite 2D Homologous Semiconductors , 2016 .

[56]  F. Giustino,et al.  Lead-Free Halide Double Perovskites via Heterovalent Substitution of Noble Metals. , 2016, The journal of physical chemistry letters.

[57]  Aslihan Babayigit,et al.  Toxicity of organometal halide perovskite solar cells. , 2016, Nature materials.

[58]  Richard H. Friend,et al.  Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes , 2015, Science.

[59]  P. Delugas,et al.  Entropy-Suppressed Ferroelectricity in Hybrid Lead-Iodide Perovskites. , 2015, The journal of physical chemistry letters.

[60]  Nripan Mathews,et al.  Lead-free germanium iodide perovskite materials for photovoltaic applications , 2015 .

[61]  Frederik C. Krebs,et al.  Tin‐ and Lead‐Based Perovskite Solar Cells under Scrutiny: An Environmental Perspective , 2015 .

[62]  Aron Walsh,et al.  Ionic transport in hybrid lead iodide perovskite solar cells , 2015, Nature Communications.

[63]  Omar K Farha,et al.  2D Homologous Perovskites as Light-Absorbing Materials for Solar Cell Applications. , 2015, Journal of the American Chemical Society.

[64]  A. Stroppa,et al.  Ferroelectric Polarization of CH3NH3PbI3: A Detailed Study Based on Density Functional Theory and Symmetry Mode Analysis. , 2015, The journal of physical chemistry letters.

[65]  D. J. Clark,et al.  Hybrid germanium iodide perovskite semiconductors: active lone pairs, structural distortions, direct and indirect energy gaps, and strong nonlinear optical properties. , 2015, Journal of the American Chemical Society.

[66]  John Wang,et al.  Ferroelectricity of CH3NH3PbI3 Perovskite. , 2015, The journal of physical chemistry letters.

[67]  Shweta Agarwala,et al.  Perovskite Solar Cells: Beyond Methylammonium Lead Iodide. , 2015, The journal of physical chemistry letters.

[68]  Eric T. Hoke,et al.  A layered hybrid perovskite solar-cell absorber with enhanced moisture stability. , 2014, Angewandte Chemie.

[69]  Sandeep Kumar Pathak,et al.  Lead-free organic–inorganic tin halide perovskites for photovoltaic applications , 2014 .

[70]  M. Green,et al.  The emergence of perovskite solar cells , 2014, Nature Photonics.

[71]  Robert P. H. Chang,et al.  Lead-free solid-state organic–inorganic halide perovskite solar cells , 2014, Nature Photonics.

[72]  A. Filippetti,et al.  Hybrid perovskites for photovoltaics: Insights from first principles , 2014 .

[73]  Aron Walsh,et al.  Atomistic Origins of High-Performance in Hybrid Halide Perovskite Solar Cells , 2014, Nano letters.

[74]  P. Umari,et al.  Relativistic Solar Cells , 2013, 1309.4895.

[75]  P. Delugas,et al.  Large band offset as driving force of two-dimensional electron confinement: The case of SrTiO3/SrZrO3 interface , 2013, 1309.4965.

[76]  I. Pallecchi,et al.  Doping-induced dimensional crossover and thermopower burst in Nb-doped SrTiO$_3$ superlattices , 2013, 1309.4964.

[77]  H. Snaith,et al.  Low-temperature processed meso-superstructured to thin-film perovskite solar cells , 2013 .

[78]  A. Filippetti,et al.  Exceptionally large room-temperature ferroelectric polarization in the PbNiO 3 multiferroic nickelate: First-principles study , 2012, 1206.2761.

[79]  A. Filippetti,et al.  Ordering and multiple phase transitions in ultra-thin nickelate superlattices , 2012, 1203.2066.

[80]  P. Delugas,et al.  Variational pseudo-self-interaction-corrected density functional approach to the ab initio description of correlated solids and molecules , 2011, 1106.5993.

[81]  P. Majumdar,et al.  Exchange interactions and magnetic phases of transition metal oxides: Benchmarking advanced ab initio methods , 2011, 1105.0647.

[82]  Stefano de Gironcoli,et al.  QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[83]  J. Scott,et al.  Ferroelectrics go bananas , 2008 .

[84]  G. Scuseria,et al.  Restoring the density-gradient expansion for exchange in solids and surfaces. , 2007, Physical review letters.

[85]  A. Filippetti,et al.  Double-exchange driven ferromagnetic metal-paramagnetic insulator transition in Mn-doped CuO , 2006 .

[86]  J. Strähle,et al.  Synthese und Struktur von Ag4[(PhN3)2C6H4]2 (en)2, einem vierkernigen Silber(I)komplex mit 1,2-Bis(phenyltriazenido)benzol als Ligand / Synthesis and Structure of Ag4[(PhN3)2C6H4]2 (en)2, a Tetranuclear Silver(I) Complex with 1,2-Bis(phenyltriazenido)benzene as Ligand , 1996 .

[87]  David B. Mitzi,et al.  Synthesis, Crystal Structure, and Optical and Thermal Properties of (C4H9NH3)2MI4 (M = Ge, Sn, Pb) , 1996 .

[88]  Richard L. Harlow,et al.  Preparation and characterization of layered lead halide compounds , 1991 .

[89]  A. Jonscher Frequency-dependence of conductivity in hopping systems , 1972 .