Hydrothermal seawater eutrophication triggered local macrobiological experimentation in the 2100 Ma Paleoproterozoic Francevillian sub-basin

[1]  J. Aubineau,et al.  Transient fertilization of a post-Sturtian Snowball ocean margin with dissolved phosphate by clay minerals , 2023, Nature communications.

[2]  M. Moussavou,et al.  Depositional condition of Paleoproterozoic Francevillian carbonate rocks revisited from rare earth element contents , 2023, Geoscience Frontiers.

[3]  Zhaozhao Tan,et al.  Dynamic deep-water oxygenation of marginal seas in the aftermath of the Sturtian Snowball Earth: Insights from redox-hydrological reconstructions of the Nanhua basin (South China) , 2023, Precambrian Research.

[4]  A. Meunier,et al.  Taphonomy of early life (2.1 Ga) in the francevillian basin (Gabon): Role of organic mineral interactions , 2023, Precambrian Research.

[5]  S. Hedges,et al.  The origin of eukaryotes and rise in complexity were synchronous with the rise in oxygen , 2023, Frontiers Bioinform..

[6]  D. Canfield,et al.  Nitrogen cycling during the Mesoproterozoic as informed by the 1400 million year old Xiamaling Formation , 2023, Earth-Science Reviews.

[7]  A. Pierson‐Wickmann,et al.  A search for life in Palaeoproterozoic marine sediments using Zn isotopes and geochemistry , 2023, Earth and Planetary Science Letters.

[8]  A. Agangi,et al.  Zinc enrichment and isotopic fractionation in a marine habitat of the c. 2.1 Ga Francevillian Group: A signature of zinc utilization by eukaryotes? , 2023, Earth and Planetary Science Letters.

[9]  Cheng Meng,et al.  Uncovering the Ediacaran phosphorus cycle , 2023, Nature.

[10]  M. Sánchez‐Román,et al.  Isotopic Signatures of Microbial Mg-Carbonates Deposited in an Ephemeral Hyperalkaline Lake (Central Spain): Paleoenvironmental Implications , 2023, Minerals.

[11]  O. Rouxel,et al.  The Palaeoproterozoic Hotazel BIF-Mn Formation as an archive of Earth's earliest oxygenation , 2023, Earth-Science Reviews.

[12]  S. Crowe,et al.  Earth’s surface oxygenation and the rise of eukaryotic life: Relationships to the Lomagundi positive carbon isotope excursion revisited , 2023, Earth-Science Reviews.

[13]  S. Sharoni,et al.  Rates of seafloor and continental weathering govern Phanerozoic marine phosphate levels , 2022, Nature Geoscience.

[14]  A. Bekker,et al.  Geochronological and geochemical constraints for the metavolcanosedimentary succession of the Nyong Complex, northwestern margin of the Congo craton: Implications for depositional age and tectonic setting of associated banded iron formations , 2022, Precambrian Research.

[15]  J. Li,et al.  Episodic ventilation of euxinic bottom waters triggers the formation of black shale-hosted Mn carbonate deposits , 2022, Geochimica et Cosmochimica Acta.

[16]  D. Canfield,et al.  A case for an active eukaryotic marine biosphere during the Proterozoic era , 2022, Proceedings of the National Academy of Sciences of the United States of America.

[17]  M. Babechuk,et al.  Petrogenesis of siliciclastic sediments and sedimentary rocks explored in three-dimensional Al2O3 – CaO*+Na2O – K2O – FeO+MgO (A-CN-K-FM) compositional space , 2022, Canadian Journal of Earth Sciences.

[18]  F. H. dos Santos,et al.  Zircon U–Pb geochronology of manganese-rich rocks from the Borborema Province, Northeast Brazil: adding a new piece to the global inventory of Paleoproterozoic manganese mineralization , 2022, Mineralium Deposita.

[19]  A. Hofmann,et al.  Moderate levels of oxygenation during the late stage of Earth's Great Oxidation Event , 2022, Earth and Planetary Science Letters.

[20]  A. Bekker,et al.  Provenance of metasiliciclastic rocks at the northwestern margin of the East Gabonian Block: Implications for deposition of BIFs and crustal evolution in southwestern Cameroon , 2022, Precambrian Research.

[21]  K. Kirsimäe,et al.  The dual role of microbes in the formation of the Malkantu manganese carbonate deposit, NW China: Petrographic, geochemical, and experimental evidence , 2022, Chemical Geology.

[22]  M. Saito,et al.  Adaptive responses of marine diatoms to zinc scarcity and ecological implications , 2022, Nature Communications.

[23]  A. Bekker,et al.  Earth’s Great Oxidation Event facilitated by the rise of sedimentary phosphorus recycling , 2022, Nature Geoscience.

[24]  S. Crowe,et al.  A one-million-year isotope record from siderites formed in modern ferruginous sediments , 2022, GSA Bulletin.

[25]  N. Tosca,et al.  Kinetic isotope effect in siderite growth: Implications for the origin of banded iron formation siderite , 2022, Geochimica et Cosmochimica Acta.

[26]  A. Bekker,et al.  Benthic redox conditions and nutrient dynamics in the ca. 2.1 Ga Franceville sub-basin , 2021, Precambrian Research.

[27]  W. Ratcliff,et al.  Oxygen suppression of macroscopic multicellularity , 2021, Nature Communications.

[28]  D. Canfield,et al.  A 200-million-year delay in permanent atmospheric oxygenation , 2021, Nature.

[29]  Sylvestre Ganno,et al.  Depositional age and tectonic environment of the Gouap banded iron formations from the Nyong group, SW Cameroon: Insights from isotopic, geochemical and geochronological studies of drillcore samples , 2021 .

[30]  W. Fischer,et al.  Apatite nanoparticles in 3.46–2.46 Ga iron formations: Evidence for phosphorus-rich hydrothermal plumes on early Earth , 2021, Geology.

[31]  A. Bekker,et al.  Elemental geochemistry and Nd isotope constraints on the provenance of the basal siliciclastic succession of the middle Paleoproterozoic Francevillian Group, Gabon , 2020, Precambrian Research.

[32]  K. Kirsimäe,et al.  The Paleoproterozoic Francevillian succession of Gabon and the Lomagundi-Jatuli event , 2020, Geology.

[33]  M. Saito,et al.  Efficient zinc/cobalt inter‐replacement in northeast Pacific diatoms and relationship to high surface dissolved Co : Zn ratios , 2020, Limnology and Oceanography.

[34]  A. Knoll,et al.  Ediacaran reorganization of the marine phosphorus cycle , 2020, Proceedings of the National Academy of Sciences.

[35]  S. Katsev,et al.  Evaluating a primary carbonate pathway for manganese enrichments in reducing environments , 2020 .

[36]  D. Erwin,et al.  On the co‐evolution of surface oxygen levels and animals , 2020, Geobiology.

[37]  T. Lenton,et al.  Phosphorus-limited conditions in the early Neoproterozoic ocean maintained low levels of atmospheric oxygen , 2020, Nature Geoscience.

[38]  N. Planavsky,et al.  Nutrient Supply to Planetary Biospheres From Anoxic Weathering of Mafic Oceanic Crust , 2020, Geophysical Research Letters.

[39]  A. Ridgwell,et al.  The impact of marine nutrient abundance on early eukaryotic ecosystems , 2020, Geobiology.

[40]  F. Lutzoni,et al.  Molybdenum threshold for ecosystem scale alternative vanadium nitrogenase activity in boreal forests , 2019, Proceedings of the National Academy of Sciences.

[41]  A. Bekker,et al.  Microbially induced potassium enrichment in Paleoproterozoic shales and implications for reverse weathering on early Earth , 2019, Nature Communications.

[42]  D. Canfield,et al.  Organism motility in an oxygenated shallow-marine environment 2.1 billion years ago , 2019, Proceedings of the National Academy of Sciences.

[43]  C. Griesinger,et al.  Bisnorgammacerane traces predatory pressure and the persistent rise of algal ecosystems after Snowball Earth , 2019, Nature Communications.

[44]  A. Bekker,et al.  Pervasive aerobic nitrogen cycling in the surface ocean across the Paleoproterozoic Era , 2018, Earth and Planetary Science Letters.

[45]  Y. Batonneau,et al.  Unusual microbial mat‐related structural diversity 2.1 billion years ago and implications for the Francevillian biota , 2018, Geobiology.

[46]  D. Canfield,et al.  The iron paleoredox proxies: A guide to the pitfalls, problems and proper practice , 2018, American Journal of Science.

[47]  F. Gauthier-Lafaye,et al.  Depositional setting of the 2·1 Ga Francevillian macrobiota (Gabon): Rapid mud settling in a shallow basin swept by high‐density sand flows , 2018 .

[48]  A. Bekker,et al.  Two-step deoxygenation at the end of the Paleoproterozoic Lomagundi Event , 2018 .

[49]  R. Buick,et al.  Differential metamorphic effects on nitrogen isotopes in kerogen extracts and bulk rocks , 2017 .

[50]  P. Falkowski,et al.  Metal availability and the expanding network of microbial metabolisms in the Archaean eon , 2017 .

[51]  Yosuke Hoshino,et al.  The rise of algae in Cryogenian oceans and the emergence of animals , 2017, Nature.

[52]  E. Dantas,et al.  U-Pb geochronology of the 2.0 Ga Itapecerica graphite-rich supracrustal succession in the São Francisco Craton: Tectonic matches with the North China Craton and paleogeographic inferences , 2017 .

[53]  Kazue Suzuki,et al.  Chronological constraints on the Paleoproterozoic Francevillian Group in Gabon , 2017 .

[54]  W. Fischer,et al.  Evolution of the global phosphorus cycle , 2016, Nature.

[55]  P. Falkowski,et al.  The Role of Microbial Electron Transfer in the Coevolution of the Biosphere and Geosphere. , 2016, Annual review of microbiology.

[56]  R. Buick,et al.  The evolution of Earth's biogeochemical nitrogen cycle , 2016 .

[57]  D. Erwin,et al.  Earth’s oxygen cycle and the evolution of animal life , 2016, Proceedings of the National Academy of Sciences.

[58]  N. Planavsky,et al.  MACROSCOPIC STRUCTURES IN THE 1.1 Ga CONTINENTAL COPPER HARBOR FORMATION: CONCRETIONS OR FOSSILS? , 2016, Palaios.

[59]  A. Knoll,et al.  Decimetre-scale multicellular eukaryotes from the 1.56-billion-year-old Gaoyuzhuang Formation in North China , 2016, Nature Communications.

[60]  W. Fischer,et al.  Manganese and the Evolution of Photosynthesis , 2015, Origins of Life and Evolution of Biospheres.

[61]  N. Butterfield Early evolution of the Eukaryota , 2015 .

[62]  A. Meunier,et al.  From detrital heritage to diagenetic transformations, the message of clay minerals contained within shales of the Palaeoproterozoic Francevillian basin (Gabon) , 2014 .

[63]  Christopher T. Reinhard,et al.  Low Mid-Proterozoic atmospheric oxygen levels and the delayed rise of animals , 2014, Science.

[64]  Sylvain Bernard,et al.  The 2.1 Ga Old Francevillian Biota: Biogenicity, Taphonomy and Biodiversity , 2014, PloS one.

[65]  F. Morel,et al.  Nitrogen isotope fractionation by alternative nitrogenases and past ocean anoxia , 2014, Proceedings of the National Academy of Sciences.

[66]  D. Canfield,et al.  Oxygen requirements of the earliest animals , 2014, Proceedings of the National Academy of Sciences.

[67]  Wei Zhang,et al.  Geochemistry of Mesozoic and Cenozoic sediments in the northern Qaidam basin, northeastern Tibetan Plateau: Implications for provenance and weathering , 2013 .

[68]  E. Stüeken A test of the nitrogen-limitation hypothesis for retarded eukaryote radiation: Nitrogen isotopes across a Mesoproterozoic basinal profile , 2013 .

[69]  B. Marty,et al.  Nitrogen Isotopic Composition and Density of the Archean Atmosphere , 2013, Science.

[70]  D. Canfield,et al.  Oxygen dynamics in the aftermath of the Great Oxidation of Earth’s atmosphere , 2013, Proceedings of the National Academy of Sciences.

[71]  D. Hutchins,et al.  Microbial biogeochemistry of coastal upwelling regimes in a changing ocean , 2013 .

[72]  M. Saito,et al.  Authigenic iron oxide proxies for marine zinc over geological time and implications for eukaryotic metallome evolution , 2013, Geobiology.

[73]  T. Pichler,et al.  Arsenic in marine hydrothermal fluids , 2013 .

[74]  A. Anbar,et al.  Bioavailability of zinc in marine systems through time , 2013 .

[75]  A. Hofmann,et al.  Stratigraphic changes of Ge/Si, REE+Y and silicon isotopes as insights into the deposition of a Mesoarchaean banded iron formation , 2012 .

[76]  A. Knoll,et al.  A basin redox transect at the dawn of animal life , 2012 .

[77]  Stephanie Dutkiewicz,et al.  A size‐structured food‐web model for the global ocean , 2012 .

[78]  L. Kump,et al.  Isotopic Evidence for Massive Oxidation of Organic Matter Following the Great Oxidation Event , 2011, Science.

[79]  D. Erwin,et al.  The Cambrian Conundrum: Early Divergence and Later Ecological Success in the Early History of Animals , 2011, Science.

[80]  A. Bekker,et al.  Rare Earth Element and yttrium compositions of Archean and Paleoproterozoic Fe formations revisited: New perspectives on the significance and mechanisms of deposition , 2010 .

[81]  Donald E. Canfield,et al.  Large colonial organisms with coordinated growth in oxygenated environments 2.1 Gyr ago , 2010, Nature.

[82]  Philip E. Bourne,et al.  History of biological metal utilization inferred through phylogenomic analysis of protein structures , 2010, Proceedings of the National Academy of Sciences.

[83]  T. Algeo,et al.  Environmental analysis of paleoceanographic systems based on molybdenum–uranium covariation , 2009 .

[84]  A. Kappler,et al.  Petrography and geochemistry of the Dales Gorge banded iron formation: Paragenetic sequence, source and implications for palaeo-ocean chemistry , 2009 .

[85]  L. Stal,et al.  Nitrogen isotopic fractionation associated with growth on dinitrogen gas and nitrate by cyanobacteria , 2009 .

[86]  N. Butterfield,et al.  Oxygen, animals and oceanic ventilation: an alternative view , 2009, Geobiology.

[87]  C. G. Wheat,et al.  Massive, low‐temperature hydrothermal flow from a basaltic outcrop on 23 Ma seafloor of the Cocos Plate: Chemical constraints and implications , 2008 .

[88]  R. D. Britt,et al.  Metal trafficking for nitrogen fixation: NifQ donates molybdenum to NifEN/NifH for the biosynthesis of the nitrogenase FeMo-cofactor , 2008, Proceedings of the National Academy of Sciences.

[89]  P. Andersson,et al.  Continentally-derived solutes in shallow Archean seawater: Rare earth element and Nd isotope evidence in iron formation from the 2.9 Ga Pongola Supergroup, South Africa , 2008 .

[90]  Philip E. Bourne,et al.  Modern proteomes contain putative imprints of ancient shifts in trace metal geochemistry , 2006, Proceedings of the National Academy of Sciences.

[91]  J. Boudou,et al.  Nitrogen isotopic evolution of carbonaceous matter during metamorphism: Methodology and preliminary results , 2006 .

[92]  T. Lyons,et al.  Trace metals as paleoredox and paleoproductivity proxies: An update , 2006 .

[93]  A. Knoll,et al.  Eukaryotic organisms in Proterozoic oceans , 2006, Philosophical Transactions of the Royal Society B: Biological Sciences.

[94]  Thomas J. Algeo,et al.  Mo–total organic carbon covariation in modern anoxic marine environments: Implications for analysis of paleoredox and paleohydrographic conditions , 2006 .

[95]  S. Jackson,et al.  Black shales, organic matter, ore genesis and hydrocarbon generation in the Paleoproterozoic Franceville Series, Gabon , 2005 .

[96]  D. Canfield,et al.  Anaerobic ammonium oxidation (anammox) in the marine environment. , 2005, Research in microbiology.

[97]  D. Canfield,et al.  Development of a sequential extraction procedure for iron: implications for iron partitioning in continentally derived particulates , 2005 .

[98]  P. Sabaté,et al.  Archean and Paleoproterozoic crust of the São Francisco Craton, Bahia, Brazil: geodynamic features , 2004 .

[99]  J. B. Maynard,et al.  Trace-element behavior and redox facies in core shales of Upper Pennsylvanian Kansas-type cyclothems , 2004 .

[100]  Mak A. Saito,et al.  The bioinorganic chemistry of the ancient ocean: the co-evolution of cyanobacterial metal requirements and biogeochemical cycles at the Archean–Proterozoic boundary? , 2003 .

[101]  M. Mottl,et al.  Oceanic phosphorus imbalance: Magnitude of the mid‐ocean ridge flank hydrothermal sink , 2003 .

[102]  F. Gauthier-Lafaye,et al.  Natural nuclear fission reactors: time constraints for occurrence, and their relation to uranium and manganese deposits and to the evolution of the atmosphere , 2003 .

[103]  J. Carignan,et al.  Routine Analyses of Trace Elements in Geological Samples using Flow Injection and Low Pressure On-Line Liquid Chromatography Coupled to ICP-MS: A Study of Geochemical Reference Materials BR, DR-N, UB-N, AN-G and GH , 2001 .

[104]  Jizhong Zhou,et al.  Temperature-dependent oxygen and carbon isotope fractionations of biogenic siderite , 2001 .

[105]  K. Timmermans,et al.  Not all eukaryotic algae can replace zinc with cobalt: Chaetoceros calcitrans (Bacillariophyceae) versus Emiliania huxleyi (Prymnesiophyceae) , 2001 .

[106]  Toby Tyrrell,et al.  The relative influences of nitrogen and phosphorus on oceanic primary production , 1999, Nature.

[107]  P. Dulski,et al.  Comparing yttrium and rare earths in hydrothermal fluids from the Mid-Atlantic Ridge: implications for Y and REE behaviour during near-vent mixing and for the Y/Ho ratio of Proterozoic seawater , 1999 .

[108]  T. Kuhn,et al.  Origin of negative Ce anomalies in mixed hydrothermal–hydrogenetic Fe–Mn crusts from the Central Indian Ridge , 1998 .

[109]  R. Feely,et al.  The relationship between P/Fe and V/Fe ratios in hydrothermal precipitates and dissolved phosphate in seawater , 1998 .

[110]  C. Guerrot,et al.  The West Central African belt: a model of 2.5–2.0Ga accretion and two-phase orogenic evolution , 1998 .

[111]  R. Feely,et al.  Phosphate removal by oceanic hydrothermal processes: An update of the phosphorus budget in the oceans , 1996 .

[112]  P. Dulski,et al.  Distribution of yttrium and rare-earth elements in the Penge and Kuruman iron-formations, Transvaal Supergroup, South Africa , 1996 .

[113]  S. Calvert,et al.  Sedimentary geochemistry of manganese; implications for the environment of formation of manganiferous black shales , 1996 .

[114]  G. M. Young,et al.  Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance , 1995 .

[115]  H. Krouse,et al.  NITROGEN ISOTOPE GEOCHEMISTRY OF ORGANIC MATTER AND MINERALS DURING DIAGENESIS AND HYDROCARBON MIGRATION , 1995 .

[116]  R. Berner,et al.  AUTHIGENIC APATITE FORMATION AND BURIAL IN SEDIMENTS FROM NON-UPWELLING, CONTINENTAL MARGIN ENVIRONMENTS , 1993 .

[117]  K. Condie Chemical composition and evolution of the upper continental crust: Contrasting results from surface samples and shales , 1993 .

[118]  N. Clauer,et al.  Sm-Nd isotopic dating of Proterozoic clay material: An example from the Francevillian sedimentary series, Gabon , 1992 .

[119]  Supriya Roy Environments and processes of manganese deposition , 1992 .

[120]  M. Fogel,et al.  Nitrogen-isotope compositions of metasedimentary rocks in the Catalina Schist, California: Implications for metamorphic devolatilization history , 1992 .

[121]  Ellery D. Ingall,et al.  Relation between sedimentation rate and burial of organic phosphorus and organic carbon in marine sediments , 1990 .

[122]  H. Elderfield,et al.  Rare earth elements in seawater near hydrothermal vents , 1983, Nature.

[123]  R. Anderson Concentration, vertical flux, and remineralization of particulate uranium in seawater , 1982 .

[124]  S. Gartner,et al.  Provenance and accumulation rates of opaline silica, Al, Ti, Fe, Mn, Cu, Ni and Co in Pacific pelagic sediments , 1973 .

[125]  O. Joensuu,et al.  Geochemical history of South Atlantic Ocean sediments since Late Cretaceous , 1972 .

[126]  W. Broecker,et al.  GEOCHEMISTRY OF THREE CORES FROM THE EAST PACIFIC RISE. , 1971 .

[127]  K. Boström Submarine volcanism as a source for iron , 1970 .

[128]  D. E. Fisher,et al.  Aluminum‐poor ferromanganoan sediments on active oceanic ridges , 1969 .

[129]  F. Gauthier-Lafaye,et al.  No proof from carbon isotopes in the Francevillian (Gabon) and Onega (Fennoscandian shield) basins of a global oxidation event at 1980–2090 Ma following the Great Oxidation Event (GOE) , 2013 .

[130]  D. Sigman,et al.  Ocean process tracers: nitrogen isotopes in the ocean , 2009 .

[131]  F. Gauthier-Lafaye,et al.  The Proterozoic Franceville Basin (S.E. Gabon): an example of interaction between marine sedimentation and extensional faulting. , 2005 .

[132]  K. Ruttenberg The Global Phosphorus Cycle , 2003 .

[133]  A. Koschinsky,et al.  Iron and manganese oxide mineralization in the Pacific , 1997, Geological Society, London, Special Publications.

[134]  R. Byrne,et al.  Chapter 158 Marine chemistry and geochemistry of the lanthanides , 1996 .

[135]  D. K. McDaniel,et al.  Geochemical approaches to sedimentation, provenance, and tectonics , 1993 .

[136]  C. Pillinger,et al.  Nitrogen isotopes and N2/Ar ratios in cherts. An attempt to measure time evolution of atmospheric .DELTA.15N value. , 1990 .

[137]  A. C. Redfield The biological control of chemical factors in the environment. , 1960, Science progress.