Simultaneous Detection of Multiple Fish Pathogens Using a Naked-Eye Readable DNA Microarray

We coupled 16S rDNA PCR and DNA hybridization technology to construct a microarray for simultaneous detection and discrimination of eight fish pathogens (Aeromonas hydrophila, Edwardsiella tarda, Flavobacterium columnare, Lactococcus garvieae, Photobacterium damselae, Pseudomonas anguilliseptica, Streptococcus iniae and Vibrio anguillarum) commonly encountered in aquaculture. The array comprised short oligonucleotide probes (30 mer) complementary to the polymorphic regions of 16S rRNA genes for the target pathogens. Targets annealed to the microarray probes were reacted with streptavidin-conjugated alkaline phosphatase and nitro blue tetrazolium/5-bromo-4-chloro-3′-indolylphosphate, p-toluidine salt (NBT/BCIP), resulting in blue spots that are easily visualized by the naked eye. Testing was performed against a total of 168 bacterial strains, i.e., 26 representative collection strains, 81 isolates of target fish pathogens, and 61 ecologically or phylogenetically related strains. The results showed that each probe consistently identified its corresponding target strain with 100% specificity. The detection limit of the microarray was estimated to be in the range of 1 pg for genomic DNA and 103 CFU/mL for pure pathogen cultures. These high specificity and sensitivity results demonstrate the feasibility of using DNA microarrays in the diagnostic detection of fish pathogens.

[1]  W A Janssen,et al.  Morphology, Physiology, and Serology of a Pasteurella Species Pathogenic for White Perch (Roccus americanus) , 1968, Journal of bacteriology.

[2]  José Luis Balcázar,et al.  Lactococcus garvieae in fish: a review. , 2006, Comparative immunology, microbiology and infectious diseases.

[3]  T. Aoki,et al.  Drug Resistance and Transferable R Plasmids in Edwardsiella tarda from Fish Culture Ponds (魚病に関する国際セミナ , 1981 .

[4]  F. Haesebrouck,et al.  Characterization of four Flavobacterium columnare (Flexibacter columnaris) strains isolated from tropical fish. , 1998, Veterinary microbiology.

[5]  D. Lipman,et al.  Improved tools for biological sequence comparison. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[6]  T. Kuo,et al.  Disease outbreak in seafarmed Cobia (Rachycentron canadum) associated with Vibrio Spp., Photobacterium damselae ssp piscicida, monogenean and myxosporean parasites , 2002 .

[7]  Masao Kimura,et al.  Studies of a bacterial tuberculoidosis of the yellowtail-I Symptomatolgy and histopathology , 1970 .

[8]  Yutaka Fukuda,et al.  Pasteurella piscicida Infection in Cultured Juvenile Japanese Flounder , 1996 .

[9]  J. Bernardet,et al.  Phenotypic and Genotypic Studies of Pseudomonas anguilliseptica Strains Isolated from Farmed European Eels (Anguilla anguilla) in France , 1992 .

[10]  Kunio Suzuki,et al.  Real-time PCR for quantification of viable Renibacterium salmoninarum in chum salmon Oncorhynchus keta. , 2007, Diseases of aquatic organisms.

[11]  H. S. Wolff,et al.  iRun: Horizontal and Vertical Shape of a Region-Based Graph Compression , 2022, Sensors.

[12]  Douglas R Call,et al.  Challenges and Opportunities for Pathogen Detection Using DNA Microarrays , 2005, Critical reviews in microbiology.

[13]  Toshio Nakatsugawa,et al.  Edwardsiella tarda Isolated from Cultured Young Flounder , 1983 .

[14]  D. Call,et al.  Simultaneous Discrimination between 15 Fish Pathogens by Using 16S Ribosomal DNA PCR and DNA Microarrays , 2004, Applied and Environmental Microbiology.

[15]  モルタダ フセイン,et al.  Multiplex PCR for Detection of Lactococcus garvieae, Streptococcus iniae and S. dysgalactiae in Cultured Yellowtail , 2006 .

[16]  H. Rasmussen,et al.  Study of Vibrio anguillarum strains from different sources with emphasis on ecological and pathobiological properties , 1988, Applied and environmental microbiology.

[17]  T. Wiklund,et al.  Pseudomonas anguilliseptica as a pathogen of salmonid fish in Finland. , 1990 .

[18]  S. Goodison,et al.  16S ribosomal DNA amplification for phylogenetic study , 1991, Journal of bacteriology.

[19]  Gregory James,et al.  PCR for clinical microbiology: An Australian and international perspective , 2010 .

[20]  Satoru Matsuoka,et al.  Pasteurella piscicida Infection in Hatchery-Reared Juvenile Striped Jack , 1992 .

[21]  Guangpeng Zhou,et al.  Development of a DNA microarray for detection and identification of Legionella pneumophila and ten other pathogens in drinking water. , 2011, International journal of food microbiology.

[22]  Leigh M. Schmidtke,et al.  Lactococcus garvieae strains isolated from rainbow trout and yellowtail in Australia, South Africa and Japan differentiated by repetitive sequence markers , 2003 .

[23]  G L Andersen,et al.  Sequence-specific identification of 18 pathogenic microorganisms using microarray technology. , 2002, Molecular and cellular probes.

[24]  Roland Brousseau,et al.  Designing better probes: effect of probe size, mismatch position and number on hybridization in DNA oligonucleotide microarrays. , 2004, Journal of microbiological methods.

[25]  José Luis Balcázar,et al.  Quantitative detection of Aeromonas salmonicida in fish tissue by real-time PCR using self-quenched, fluorogenic primers. , 2007, Journal of medical microbiology.

[26]  J Albertyn,et al.  Pathogenic Gram-positive cocci in South African rainbow trout, Oncorhynchus mykiss (Walbaum). , 2011, Journal of fish diseases.

[27]  G. Bullock vibriosis in fish , 2022, CABI Compendium.

[28]  T. Nakai,et al.  Studies on red spot disease of pond-cultured eels. V. Immune response of the Japanese eel to the causative bacterium Pseudomonas anguilliseptica. , 1979 .

[29]  G. Fox,et al.  How close is close: 16S rRNA sequence identity may not be sufficient to guarantee species identity. , 1992, International journal of systematic bacteriology.

[30]  Ramesh P. Perera,et al.  Streptococcus iniae Associated with Mortality of Tilapia nilotica × T. aurea Hybrids , 1994 .

[31]  Douglas R Call,et al.  Detection of bacterial pathogens in environmental samples using DNA microarrays. , 2003, Journal of microbiological methods.

[32]  E. Southern,et al.  Steric factors influencing hybridisation of nucleic acids to oligonucleotide arrays. , 1997, Nucleic acids research.

[33]  Roland Brousseau,et al.  Molecular Biology and DNA Microarray Technology for Microbial Quality Monitoring of Water , 2004, Critical reviews in microbiology.

[34]  Patrick T.K. Woo,et al.  Fish Diseases and Disorders , 2006 .

[35]  Dorothea K. Thompson,et al.  Development and Evaluation of Functional Gene Arrays for Detection of Selected Genes in the Environment , 2001, Applied and Environmental Microbiology.

[36]  S. P. Fodor,et al.  High density synthetic oligonucleotide arrays , 1999, Nature Genetics.

[37]  Rudolf Amann,et al.  Unlabeled Helper Oligonucleotides Increase the In Situ Accessibility to 16S rRNA of Fluorescently Labeled Oligonucleotide Probes , 2000, Applied and Environmental Microbiology.

[38]  Pierre Payment,et al.  Waterborne Pathogen Detection by Use of Oligonucleotide-Based Microarrays , 2005, Applied and Environmental Microbiology.

[39]  Alicia E. Toranzo,et al.  Pasteurellosis in cultured gilthead seabream (Sparus aurata): first report in Spain. , 1991 .

[40]  A. Ellis,et al.  Histopathology of ‘Sekiten‐byo’ caused by Pseudomonas anguittiseptica in the European eel, Anguilla anguilla L., in Scotland , 1983 .

[41]  K. Tajima,et al.  Studies on the Taxonomy and Serology of Causative Organisms of Fish Vibriosis , 1980 .

[42]  Douglas R. Call,et al.  Simultaneous Detection of Marine Fish Pathogens by Using Multiplex PCR and a DNA Microarray , 2004, Journal of Clinical Microbiology.

[43]  Kazuhiro Nakajima,et al.  Comparison of Fatty Acid, Protein, and Serological Properties Distinguishing Outer Membranes of Pseudomonas anguilliseptica Strains from Those of Fish Pathogens and Other Pseudomonads , 1983 .

[44]  M. Levin,et al.  Vibrio anguillarum as a cause of disease in winter flounder (Pseudopleuronectes americanus). , 1972, Canadian journal of microbiology.

[45]  Chin-I Chang,et al.  Multiplex nested‐polymerase chain reaction for the simultaneous detection of Aeromonas hydrophila, Edwardsiella tarda, Photobacterium damselae and Streptococcus iniae, four important fish pathogens in subtropical Asia , 2009 .

[46]  Hiroshi Hanada,et al.  First records of Pseudomonas anguilliseptica infection in cultured ayu, Plecoglossus altivelis , 1985 .

[47]  Rudolf Amann,et al.  Optimization Strategies for DNA Microarray-Based Detection of Bacteria with 16S rRNA-Targeting Oligonucleotide Probes , 2003, Applied and Environmental Microbiology.

[48]  Darrell P. Chandler,et al.  Sequence versus Structure for the Direct Detection of 16S rRNA on Planar Oligonucleotide Microarrays , 2003, Applied and Environmental Microbiology.

[49]  Vicki S. Blazer,et al.  Bacterial fish pathogens , 2008, Environmental Biology of Fishes.

[50]  C. J. Rodgers,et al.  Disease Problems in Cultured Marine Fish in the Mediterranean , 1998 .

[51]  Chen-Zen Lo,et al.  UPS 2.0: unique probe selector for probe design and oligonucleotide microarrays at the pangenomic/ genomic level , 2010, BMC Genomics.

[52]  S. Egusa,et al.  Some Bacterial Diseases of Freshwater Fishes in Japan , 1976 .