IDENTIFYING TIMBER PERFORMANCE CLASSES USING LATENT CLASS REGRESSION

Latent class regression is a statistical method which is not well known in wood science for predicting distortion of sawn timber from structural wood characteristics. The method identifies unknown subgroups in a dataset and allows more accurate regression models to be derived. We identified two separate classes to describe the relationship between bowdry, springdry, or twistdry and the predictors: initial distortion bowfresh, springfresh, or twistfresh, wood density, ring width, ring orientation, wood type (juvenile or adult), percentage compression wood measured separately on the four faces, and the contagion index which is a measure for the distribution of compression wood. The latent class regression models developed for the separate classes explained the variation in bow, spring, and twist to a higher degree than a single regression model over the entire dataset. For bow, R 2 increased from 0.13 to 0.24 and 0.41 for Class 1 and Class 2, for spring from 0.24 to 0.45 and 0.67, and for twist from 0.15 to 0.38 and 0.33. For individual regression models, the predictors showed a varying effect. In classes with significant compression wood on the faces, the effect of wood type seemed weaker, and vice versa. It was concluded that latent class regression analysis allows a more detailed explanation of the effects of wood structure on sawn timber distortion for heterogeneous datasets.

[1]  Stanley L. Sclove,et al.  Correction to “Multi-sample cluster analysis using Akaike's information criterion” , 1984 .

[2]  U. Seeling Transformation of plantation forests — expected wood properties of Norway spruce (Picea abies (L.) Karst.) within the period of stand stabilisation , 2001 .

[3]  G. Johansson,et al.  Distortion of Norway spruce timber , 2001, Holz als Roh- und Werkstoff.

[4]  P. J. Pellicane,et al.  Quality of timber products from Norway spruce , 1995, Wood Science and Technology.

[5]  J. Petty,et al.  Effect of growth rate on wood properties of genetically improved Sitka spruce , 2004 .

[6]  Ola Dahlblom,et al.  Influence of spiral grain on stiffness grading of structural timber , 1999 .

[7]  S. Ormarsson,et al.  A numerical study of the shape stability of sawn timber subjected to moisture variation , 2000, Wood Science and Technology.

[8]  Marie Johansson,et al.  Distortion of Norway spruce timber Part 1. Variation of relevant wood properties , 2001, Holz als Roh- und Werkstoff.

[9]  Alan J. Miller Subset Selection in Regression , 1992 .

[10]  W. DeSarbo,et al.  A mixture likelihood approach for generalized linear models , 1995 .

[11]  J. Beaulieu,et al.  Study of geographical variation in kiln-drying behavior of plantation-grown white spruce , 2007 .

[12]  Rüdiger Mutz,et al.  Modelling juvenile-mature wood transition in Scots pine (Pinus sylvestris L.) using nonlinear mixed-effects models , 2004 .

[13]  G. Downes,et al.  WITHIN-TREE VARIATION IN ANATOMICAL PROPERTIES OF COMPRESSION WOOD IN RADIATA PINE , 2004 .

[14]  Marie Johansson,et al.  Prediction of Bow and Crook in Timber Studs Based on Variation in Longitudinal Shrinkage , 2007 .

[15]  Alan J. Miller,et al.  Subset Selection in Regression , 1991 .

[16]  W. DeSarbo,et al.  A maximum likelihood methodology for clusterwise linear regression , 1988 .

[17]  Jozef Keckes,et al.  Structure–function relationships of four compression wood types: micromechanical properties at the tissue and fibre level , 2004, Trees.

[18]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[19]  R. Ball,et al.  WOOD DENSITY AND MICROFIBRIL ANGLE IN 10 PINUS RADIATA CLONES : DISTRIBUTION AND INFLUENCE ON PRODUCT PERFORMANCE , 2005 .

[20]  Jan Nyström,et al.  Measurement of Green Plank Shape for Prediction and Elimination of Compression Wood , 2002 .

[21]  M. Öhman,et al.  Prediction of longitudinal shrinkage and bow in Norway spruce studs using scanning techniques , 2003, Journal of Wood Science.

[22]  J. Gove,et al.  A Finite Mixture Model for Characterizing the Diameter Distributions of Mixed-Species Forest Stands , 2002, Forest Science.

[23]  A. Farina Principles and Methods in Landscape Ecology , 1997, Springer Netherlands.

[24]  C. Bengtsson Mechano-sorptive bending creep of timber – influence of material parameters , 2001, Holz als Roh- und Werkstoff.

[25]  T. E. Timell Compression Wood in Gymnosperms , 1986 .

[26]  U. Seeling,et al.  Einfluß von Richtgewebe (“Druckholz”) auf Festigkeit und Elastizität des Fichtenholzes , 1999, Holz als Roh- und Werkstoff.

[27]  R. Kliger,et al.  Influence of Material Characteristics on Warp In Norway Spruce Studs , 2007 .

[28]  Marie Johansson,et al.  Distortion of Norway spruce timber Part 2. Modelling twist , 2001, Holz als Roh- und Werkstoff.

[29]  Geoffrey J. McLachlan,et al.  Finite Mixture Models , 2019, Annual Review of Statistics and Its Application.

[30]  Anton K. Formann,et al.  Latent class model diagnostics - a review and some proposals , 2003, Comput. Stat. Data Anal..

[31]  Jay Magidson,et al.  Latent class models for classification , 2003, Comput. Stat. Data Anal..

[32]  H. Petersson,et al.  NUMERICAL AND EXPERIMENTAL STUDIES ON INFLUENCE OF COMPRESSION WOOD TIMBER DISTORTION , 2000 .

[33]  Marie Johansson,et al.  Part 3: Modelling bow and spring , 2003 .

[34]  T. Seifert,et al.  Erkennung und Messung des Reaktionsholzes bei Fichte (Picea abies (L.) Karst.) mittels Verfahren der digitalen Bildanalyse , 2004, Holz als Roh- und Werkstoff.

[35]  B. Efron The jackknife, the bootstrap, and other resampling plans , 1987 .