Planck 2013 results - XXVI. Background geometry and topology of the Universe

Maps of cosmic microwave background (CMB) temperature and polarization from the 2015 release of Planck data provide the highestquality full-sky view of the surface of last scattering available to date. This enables us to detect possible departures from a globally isotropic cosmology. We present the first searches using CMB polarization for correlations induced by a possible non-trivial topology with a fundamental domain that intersects, or nearly intersects, the last-scattering surface (at comoving distance χrec), both via a direct scan for matched circular patterns at the intersections and by an optimal likelihood calculation for specific topologies. We specialize to flat spaces with cubic toroidal (T3) and slab (T1) topologies, finding that explicit searches for the latter are sensitive to other topologies with antipodal symmetry. These searches yield no detection of a compact topology with a scale below the diameter of the last-scattering surface. The limits on the radius ℛi of the largest sphere inscribed in the fundamental domain (at log-likelihood ratio Δlnℒ > −5 relative to a simply-connected flat Planck best-fit model) are: ℛi > 0.97 χrec for the T3 cubic torus; and ℛi > 0.56 χrec for the T1 slab. The limit for the T3 cubic torus from the matched-circles search is numerically equivalent, ℛi > 0.97 χrec at 99% confidence level from polarization data alone. We also perform a Bayesian search for an anisotropic global Bianchi VIIh geometry. In the non-physical setting, where the Bianchi cosmology is decoupled from the standard cosmology, Planck temperature data favour the inclusion of a Bianchi component with a Bayes factor of at least 2.3 units of log-evidence. However, the cosmological parameters that generate this pattern are in strong disagreement with those found from CMB anisotropy data alone. Fitting the induced polarization pattern for this model to the Planck data requires an amplitude of −0.10 ± 0.04 compared to the value of + 1 if the model were to be correct. In the physically motivated setting, where the Bianchi parameters are coupled and fitted simultaneously with the standard cosmological parameters, we find no evidence for a Bianchi VIIh cosmology and constrain the vorticity of such models to (ω/H)0 < 7.6 × 10-10 (95% CL).

G. W. Pratt | C. B. Netterfield | J. Aumont | N. Ponthieu | D. L. Clements | M. Rowan-Robinson | J. R. Bond | G. Giardino | L. Toffolatti | J. J. Bock | F. Pasian | B. P. Crill | W. A. Holmes | G. Savini | W. Hovest | A. Catalano | M. Frailis | J. Borrill | A. Gruppuso | E. Hivon | L. Montier | G. Morgante | P. Natoli | F. Piacentini | M. Remazeilles | R. Stompor | A. Coulais | F. Cuttaia | L. Terenzi | O. Dor'e | M. Maris | S. Galeotta | M. Bersanelli | C. Burigana | N. Mandolesi | R. Rebolo | E. P. S. Shellard | S. Plaszczynski | E. Pointecouteau | B. Maffei | F. Nati | L. Pagano | W. C. Jones | V. Stolyarov | G. Polenta | F. Pajot | I. Ristorcelli | F. Perrotta | S. R. Hildebrandt | A. Riazuelo | C. A. Oxborrow | J. Varis | A. Moneti | D. Santos | J. D. McEwen | H. K. Eriksen | A. J. Banday | C. R. Lawrence | R. J. Laureijs | J. Bobin | D. Harrison | A. Mennella | P. B. Lilje | D. Herranz | S. Masi | B. D. Wandelt | J.-F. Cardoso | L. Knox | K. Ganga | D. Hanson | G. Lagache | L. Bonavera | P. Vielva | N. Aghanim | X. Dupac | J. P. Rachen | A. Zacchei | D. Maino | L. Perotto | M. Douspis | F. Sureau | C. Rosset | A. Benoit | F.-X. D'esert | J. F. Mac'ias-P'erez | J. G. Bartlett | J. Delabrouille | S. Matarrese | L. Valenziano | A. Benoit-L'evy | A. Zonca | T. S. Kisner | N. Vittorio | T. Poutanen | M. Arnaud | M. Tomasi | A. H. Jaffe | O. Forni | G. Patanchon | A. Challinor | H. C. Chiang | S. Donzelli | F. Couchot | S. Mitra | M. Juvela | D. J. Marshall | D. Tavagnacco | J. P. Leahy | P. M. Lubin | D. Novikov | P. Mazzotta | A. Gregorio | R. B. Barreiro | B. Rusholme | D. Scott | C. Renault | D. Munshi | R. Keskitalo | E. Franceschi | A. Hornstrup | T. Riller | L. Danese | C. Baccigalupi | L. Mendes | H. U. Norgaard-Nielsen | J. M. Diego | D. Pogosyan | S. Ricciardi | M. Kunz | H. Kurki-Suonio | L. Popa | J.-L. Starck | J. Tuovinen | R. Laureijs | F. Pasian | L. Valenziano | H. Kurki-Suonio | P. Lilje | N. Aghanim | J. Bartlett | C. Baccigalupi | K. Benabed | M. Kunz | G. Morgante | M. Douspis | J. Delouis | M. Frailis | A. Zacchei | S. Colombi | J. Lesgourgues | A. Melchiorri | J. Bobin | O. Forni | T. Ensslin | E. Hivon | A. Banday | F. Hansen | M. Reinecke | M. Hobson | A. Lasenby | M. Bridges | A. Challinor | B. Wandelt | F. Bouchet | S. Matarrese | J. Bock | J. Borrill | P. Bernardis | A. Jaffe | C. Netterfield | R. Stompor | J. Bond | B. Crill | K. Ganga | W. Jones | F. Piacentini | D. Pogosyan | S. Prunet | G. Efstathiou | M. Juvela | J. Diego | A. Moss | S. Mitra | H. Peiris | A. Benoit-Lévy | J. McEwen | R. Rebolo | A. Coulais | T. Poutanen | A. Gregorio | P. Christensen | M. Ashdown | F. Sureau | C. Lawrence | B. Rusholme | E. Pierpaoli | R. Davis | T. Kisner | F. Atrio-Barandela | T. Jaffe | H. Eriksen | F. Couchot | S. Plaszczynski | H. Nørgaard-Nielsen | R. Davies | J. Leahy | P. Ade | C. Armitage-Caplan | M. Arnaud | J. Aumont | E. Battaner | A. Benoit | J. Bernard | M. Bersanelli | P. Bielewicz | A. Bonaldi | L. Bonavera | M. Bucher | C. Burigana | R. C. Butler | A. Catalano | A. Chamballu | L. Chiang | H. Chiang | S. Church | D. Clements | L. Colombo | A. Curto | F. Cuttaia | L. Danese | A. Rosa | G. Zotti | J. Delabrouille | F. D'esert | H. Dole | S. Donzelli | O. Dor'e | X. Dupac | F. Finelli | E. Franceschi | S. Galeotta | M. Giard | G. Giardino | Y. Giraud-H'eraud | J. Gonz'alez-Nuevo | K. M. G'orski | S. Gratton | A. Gruppuso | D. Hanson | D. Harrison | S. Henrot-Versill'e | C. Hern'andez-Monteagudo | D. Herranz | S. Hildebrandt | W. Holmes | A. Hornstrup | W. Hovest | K. Huffenberger | E. Keihanen | R. Keskitalo | J. Knoche | L. Knox | G. Lagache | A. Lahteenmaki | J. Lamarre | R. Leonardi | M. Liguori | M. Linden-Vørnle | M. L'opez-Caniego | P. Lubin | J. Mac'ias-P'erez | B. Maffei | D. Maino | N. Mandolesi | M. Maris | D. Marshall | P. Martin | E. Mart'inez-Gonz'alez | F. Matthai | P. Mazzotta | L. Mendes | A. Mennella | M. Migliaccio | M. Miville-Deschênes | A. Moneti | L. Montier | D. Mortlock | D. Munshi | P. Naselsky | F. Nati | P. Natoli | F. Noviello | D. Novikov | I. Novikov | S. Osborne | F. Paci | L. Pagano | F. Pajot | D. Paoletti | G. Patanchon | O. Perdereau | L. Perotto | F. Perrotta | M. Piat | D. Pietrobon | E. Pointecouteau | G. Polenta | N. Ponthieu | L. Popa | G. Pratt | G. Prezeau | J. Puget | J. Rachen | M. Remazeilles | C. Renault | S. Ricciardi | T. Riller | I. Ristorcelli | G. Rocha | C. Rosset | G. Roudier | M. Rowan-Robinson | M. Sandri | D. Santos | G. Savini | D. Scott | M. Seiffert | E. Shellard | L. Spencer | J. Starck | R. Sudiwala | D. Sutton | A. Suur-Uski | J. Sygnet | J. Tauber | D. Tavagnacco | L. Terenzi | L. Toffolatti | M. Tomasi | M. Tristram | M. Tucci | J. Valiviita | B. Tent | J. Varis | P. Vielva | F. Villa | N. Vittorio | L. Wade | D. Yvon | A. Zonca | V. Stolyarov | J. Cardoso | S. Masi | C. Leroy | A. Riazuelo | A. Bonaldi | F. Villa | M. Sandri | M. Ashdown | K. Benabed | J.-P. Bernard | P. Bielewicz | F. R. Bouchet | L. P. L. Colombo | A. Curto | R. J. Davis | P. de Bernardis | A. de Rosa | G. de Zotti | J.-M. Delouis | G. Efstathiou | T. A. Ensslin | F. Finelli | M. Giard | J. Gonz'alez-Nuevo | F. K. Hansen | E. Keihanen | A. Lahteenmaki | J.-M. Lamarre | A. Lasenby | M. Liguori | M. L'opez-Caniego | P. G. Martin | E. Mart'inez-Gonz'alez | A. Melchiorri | M. Migliaccio | M.-A. Miville-Deschenes | A. Moss | P. Naselsky | D. Paoletti | O. Perdereau | J.-L. Puget | M. Reinecke | G. Rocha | G. Roudier | A.-S. Suur-Uski | J. A. Tauber | M. Tristram | J. Valiviita | P. R. Christensen | Planck Collaboration P. A. R. Ade | C. Armitage-Caplan | F. Atrio-Barandela | E. Battaner | M. Bridges | M. Bucher | A. Chamballu | L.-Y Chiang | S. Church | S. Colombi | R. D. Davies | H. Dole | S. Gratton | M. Hobson | K. M. Huffenberger | T. R. Jaffe | J. Knoche | R. Leonardi | J. Lesgourgues | F. Matthai | D. Mortlock | F. Noviello | I. Novikov | S. Osborne | F. Paci | H. V. Peiris | M. Piat | E. Pierpaoli | D. Pietrobon | S. Prunet | M. D. Seiffert | L. D. Spencer | R. Sudiwala | D. Sutton | J.-F. Sygnet | M. Tucci | J. Tuovinen | B. Van Tent | L. A. Wade | D. Yvon | Y. Giraud-H'eraud | S. Henrot-Versill'e | C. Hern'andez-Monteagudo | M. Linden-Vornle | G. Pr'ezeau | C. Leroy | J. Bock | D. Scott | P. Christensen | M. Rowan‐Robinson | D. Scott | S. Mitra

[1]  C. A. Oxborrow,et al.  Planck 2015 results: XXIII. The thermal Sunyaev-Zeldovich effect-cosmic infrared background correlation , 2015, 1509.06555.

[2]  G. W. Pratt,et al.  Planck2015 results: XXVI. The SecondPlanckCatalogue of Compact Sources , 2015, 1507.02058.

[3]  G. W. Pratt,et al.  Planck 2015. XX. Constraints on inflation , 2015, 1502.02114.

[4]  C. A. Oxborrow,et al.  Planck 2015 results. XVIII. Background geometry & topology , 2015, 1502.01593.

[5]  C. A. Oxborrow,et al.  Planck2015 results , 2015, Astronomy &amp; Astrophysics.

[6]  C. A. Oxborrow,et al.  Planck 2015 results - XXVIII. The Planck Catalogue of Galactic cold clumps , 2015, 1502.01599.

[7]  C. A. Oxborrow,et al.  Planck 2015 results Special feature Planck 2015 results XXVII . The second Planck catalogue of Sunyaev-Zeldovich sources , 2016 .

[8]  G. W. Pratt,et al.  XXIV. Cosmology from Sunyaev-Zeldovich cluster counts , 2015, 1502.01597.

[9]  Jean-Pierre Luminet,et al.  Cosmic Topology , 2015, Scholarpedia.

[10]  C. A. Oxborrow,et al.  Planck 2013 results. XXXI. Consistency of the Planck data , 2014, 1508.03375.

[11]  R. Aurich,et al.  The Hantzsche–Wendt manifold in cosmic topology , 2014, 1403.2190.

[12]  G. W. Pratt,et al.  Planck 2013 results. XI. All-sky model of thermal dust emission , 2013, 1312.1300.

[13]  C. A. Oxborrow,et al.  Planck 2013 results. XXX. Cosmic infrared background measurements and implications for star formation , 2013, 1309.0382.

[14]  G. W. Pratt,et al.  Planck 2013 results. XXII. Constraints on inflation , 2013, 1303.5082.

[15]  R. B. Barreiro,et al.  Planck 2013 results. V. LFI calibration , 2013, 1303.5066.

[16]  G. W. Pratt,et al.  Planck 2013 results. XVII. Gravitational lensing by large-scale structure , 2013, 1303.5077.

[17]  C. A. Oxborrow,et al.  Planck2013 results. VI. High Frequency Instrument data processing , 2013, Astronomy &amp; Astrophysics.

[18]  C. A. Oxborrow,et al.  Planck 2015 results. I. Overview of products and scientific results , 2015 .

[19]  C. A. Oxborrow,et al.  Planck 2013 results. XIV. Zodiacal emission , 2013, 1303.5074.

[20]  G. W. Pratt,et al.  Planck2013 results. XXIX. ThePlanckcatalogue of Sunyaev-Zeldovich sources , 2013, Astronomy &amp; Astrophysics.

[21]  C. A. Oxborrow,et al.  Planck 2013 results. XVI. Cosmological parameters , 2013, 1303.5076.

[22]  C. A. Oxborrow,et al.  Planck 2015 results: XXIII. The thermal Sunyaev-Zeldovich effect-cosmic infrared background correlation , 2015, 1509.06555.

[23]  C. A. Oxborrow,et al.  Planck 2013 results - VIII. HFI photometric calibration and mapmaking , 2013, 1303.5069.

[24]  G. W. Pratt,et al.  Astronomy & Astrophysics manuscript no. HFI˙Transfer˙Function˙and˙Beams c ○ ESO 2013 , 2013 .

[25]  G. W. Pratt,et al.  Planck 2015 results - XVII. Constraints on primordial non-Gaussianity , 2014 .

[26]  G. W. Pratt,et al.  Planck 2013 results. IX. HFI spectral response , 2013, 1303.5070.

[27]  C. A. Oxborrow,et al.  Planck2013 results. XXVIII. ThePlanckCatalogue of Compact Sources , 2013, Astronomy &amp; Astrophysics.

[28]  C. A. Oxborrow,et al.  Planck 2013 results. XIII. Galactic CO emission , 2013, 1303.5073.

[29]  G. W. Pratt,et al.  Planck 2013 results Special feature Planck 2013 results . XXV . Searches for cosmic strings and other topological defects , 2014 .

[30]  G. W. Pratt,et al.  Planck 2013 results. XVIII. The gravitational lensing-infrared background correlation , 2013, 1303.5078.

[31]  C. A. Oxborrow,et al.  Planck2013 results. XII. Diffuse component separation , 2013, Astronomy &amp; Astrophysics.

[32]  C. A. Oxborrow,et al.  Planck 2013 results. XXVII. Doppler boosting of the CMB: Eppur si muove , 2013, 1303.5087.

[33]  R. B. Barreiro,et al.  Planck 2013 results. III. LFI systematic uncertainties , 2013, 1303.5064.

[34]  R. B. Barreiro,et al.  Planck 2013 results. IV. Low Frequency Instrument beams and window functions , 2013, 1303.5065.

[35]  R. B. Barreiro,et al.  Planck 2015 results. II. Low Frequency Instrument data processings , 2013, 1502.01583.

[36]  G. W. Pratt,et al.  Astronomy & Astrophysics manuscript no. planck˙isw c ○ ESO 2013 , 2013 .

[37]  G. W. Pratt,et al.  Planck 2013 results. XV. CMB power spectra and likelihood , 2013, 1303.5075.

[38]  R. Aurich,et al.  A search for cosmic topology in the final WMAP data , 2013, 1303.4226.

[39]  A. Lasenby,et al.  Bayesian analysis of anisotropic cosmologies: Bianchi VIIh and WMAP , 2013, 1303.3409.

[40]  Edward J. Wollack,et al.  NINE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP) OBSERVATIONS: FINAL MAPS AND RESULTS , 2012, 1212.5225.

[41]  D. Spergel,et al.  Constraints on the Topology of the Universe: Extension to General Geometries , 2012, 1206.2939.

[42]  K. Gorski,et al.  Constraining the topology of the Universe using the polarised CMB maps. , 2011, 1111.6046.

[43]  R. Tavakol,et al.  What can the detection of a single pair of circles-in-the-sky tell us about the geometry and topology of the Universe? , 2011, 1108.2842.

[44]  Y. Yoshii,et al.  An improved cosmic crystallography method to detect holonomies in flat spaces , 2011, 1103.1466.

[45]  Edward J. Wollack,et al.  SEVEN-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP) OBSERVATIONS: SKY MAPS, SYSTEMATIC ERRORS, AND BASIC RESULTS , 2010, 1001.4744.

[46]  A. Banday,et al.  Constraints on the topology of the Universe derived from the 7-yr WMAP data , 2010, 1012.3549.

[47]  Jaiseung Kim,et al.  How to make a clean separation between CMB E and B modes with proper foreground masking , 2010, 1010.2636.

[48]  A. Challinor,et al.  Linearization of homogeneous, nearly-isotropic cosmological models , 2010, 1009.3935.

[49]  P. Vielva,et al.  A comprehensive overview of the Cold Spot , 2010, 1008.3051.

[50]  A. Lewis,et al.  Estimators for CMB statistical anisotropy , 2009, 0908.0963.

[51]  A. Pontzen Rogues' gallery: the full freedom of the Bianchi CMB anomalies , 2009, 0901.2122.

[52]  F. Feroz,et al.  MultiNest: an efficient and robust Bayesian inference tool for cosmology and particle physics , 2008, 0809.3437.

[53]  P. Bielewicz,et al.  The study of topology of the Universe using multipole vectors , 2008, 0804.2437.

[54]  Z. Buliński,et al.  Poincaré dodecahedral space parameter estimates , 2008, 0807.4260.

[55]  Edward J. Wollack,et al.  FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2008, 0803.0547.

[56]  B. Roukema,et al.  A test of the Poincaré dodecahedral space topology hypothesis with the WMAP CMB data , 2008, 0801.1358.

[57]  F. Steiner,et al.  Do we live in a ‘small universe’? , 2007, 0708.1420.

[58]  N. Aghanim,et al.  Detectability of nontrivial topologies , 2007, 0704.3076.

[59]  S. Klein Astronomy and astrophysics with , 2008 .

[60]  A. Lasenby,et al.  Bianchi VIIh models and the cold spot texture , 2007, 0712.1789.

[61]  A. Jaffe,et al.  Imprints of spherical nontrivial topologies on the cosmic microwave background. , 2007, Physical review letters.

[62]  A. Pontzen,et al.  Bianchi model CMB polarization and its implications for CMB anomalies , 2007, 0706.2075.

[63]  J. Weeks,et al.  A new analysis of the Poincar dodecahedral space model , 2007, 0705.0217.

[64]  F. Feroz,et al.  Multimodal nested sampling: an efficient and robust alternative to Markov Chain Monte Carlo methods for astronomical data analyses , 2007, 0704.3704.

[65]  A. Lasenby,et al.  Markov chain Monte Carlo analysis of Bianchi VIIh models , 2006, astro-ph/0605325.

[66]  J. Key,et al.  Extending the WMAP bound on the size of the Universe , 2006, astro-ph/0604616.

[67]  T. Souradeep,et al.  Unveiling hidden patterns in CMB anisotropy maps , 2006, astro-ph/0604279.

[68]  Edward J. Wollack,et al.  Three Year Wilkinson Microwave Anistropy Probe (WMAP) Observations: Polarization Analysis , 2006, astro-ph/0603450.

[69]  A. Lasenby,et al.  Markov chain Monte Carlo analysis of Bianchi VII h models , 2007 .

[70]  H. K. Eriksen,et al.  No Higher Criticism of the Bianchi-corrected Wilkinson Microwave Anisotropy Probe data , 2006 .

[71]  K. Gorski,et al.  Bianchi type VIIh models and the WMAP 3-year data , 2006, astro-ph/0606046.

[72]  K. Land,et al.  Template fitting and the large-angle cosmic microwave background anomalies , 2006 .

[73]  K. Gorski,et al.  Fast and Efficient Template Fitting of Deterministic Anisotropic Cosmological Models Applied to WMAP Data , 2006, astro-ph/0603844.

[74]  Institute of Theoretical Astrophysics,et al.  No Higher Criticism of the Bianchi Corrected WMAP Data , 2006, astro-ph/0602023.

[75]  J. Luminet,et al.  Constraining Cosmic Topology with CMB Polarization , 2006, astro-ph/0601433.

[76]  M. Cruz,et al.  The non‐Gaussian cold spot in Wilkinson Microwave Anisotropy Probe: significance, morphology and foreground contribution , 2006, astro-ph/0601427.

[77]  K. Gorski,et al.  On the Viability of Bianchi Type VIIh Models with Dark Energy , 2005, astro-ph/0512433.

[78]  F. Steiner,et al.  The circles-in-the-sky signature for three spherical universes , 2005, astro-ph/0510847.

[79]  N. Aghanim,et al.  Constraining topology in harmonic space , 2005, astro-ph/0510164.

[80]  A. Kogut,et al.  Constraints on the Topology of the Universe from the Wilkinson Microwave Anisotropy Probe First-Year Sky Maps , 2004, astro-ph/0404400.

[81]  J. D. McEwen,et al.  Non-Gaussianity detections in the Bianchi VIIh corrected WMAP one-year data made with directional spherical wavelets , 2005, astro-ph/0510349.

[82]  K. Land,et al.  Template fitting and the large-angle CMB anomalies , 2005, astro-ph/0509752.

[83]  K. Gorski,et al.  Evidence of Vorticity and Shear at Large Angular Scales in the WMAP Data: A Violation of Cosmological Isotropy? , 2005, astro-ph/0503213.

[84]  F. Steiner,et al.  CMB anisotropy of the Poincaré dodecahedron , 2004, astro-ph/0412569.

[85]  K. Gorski,et al.  HEALPix: A Framework for High-Resolution Discretization and Fast Analysis of Data Distributed on the Sphere , 2004, astro-ph/0409513.

[86]  G. Rocha,et al.  Non-random phases in non-trivial topologies , 2004, astro-ph/0404356.

[87]  P. Murdin MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY , 2005 .

[88]  Andrei Linde Creation of a compact topologically nontrivial inflationary universe , 2004, hep-th/0408164.

[89]  P. Vielva,et al.  Detection of Non-Gaussianity in the Wilkinson Microwave Anisotropy Probe First-Year Data Using Spherical Wavelets , 2004 .

[90]  H. Then,et al.  Hyperbolic universes with a horned topology and the cosmic microwave background anisotropy , 2004, astro-ph/0403597.

[91]  J. Weeks,et al.  Cosmic microwave background anisotropies in multiconnected flat spaces , 2003, astro-ph/0311314.

[92]  E. Komatsu,et al.  Constraining the topology of the universe. , 2003, Physical review letters.

[93]  Andrew H. Jaffe,et al.  Large-scale power in the CMB and new physics: An analysis using Bayesian model comparison , 2003, astro-ph/0308461.

[94]  J. Weeks,et al.  Simulating cosmic microwave background maps in multiconnected spaces , 2002, astro-ph/0212223.

[95]  J. Weeks,et al.  Dodecahedral space topology as an explanation for weak wide-angle temperature correlations in the cosmic microwave background , 2003, Nature.

[96]  R. B. Barreiro,et al.  Detection of Non-Gaussianity in the Wilkinson Microwave Anisotropy Probe First-Year Data Using Spherical Wavelets , 2003, astro-ph/0310273.

[97]  Oxford,et al.  Ghosts of the Milky Way: a search for topology in new quasar catalogues , 2003, astro-ph/0304290.

[98]  Edward J. Wollack,et al.  First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Parameter Estimation Methodology , 2003, astro-ph/0302218.

[99]  Edward J. Wollack,et al.  First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Preliminary Maps and Basic Results , 2003, astro-ph/0302207.

[100]  N. Bissantz,et al.  Monthly Notices of the Royal Astronomical Society , 2003 .

[101]  K. Gorski,et al.  Topology of the Universe from COBE—DMR — a wavelet approach , 2002, astro-ph/0205155.

[102]  J. Weeks,et al.  Eigenmodes of three-dimensional spherical spaces and their application to cosmology , 2002, gr-qc/0205009.

[103]  J. Levin Topology and the cosmic microwave background , 2001, gr-qc/0108043.

[104]  Jean-Philippe Uzan,et al.  Eigenmodes of three-dimensional spherical spaces and their application to cosmology , 2002 .

[105]  William H. Press,et al.  Numerical recipes in C , 2002 .

[106]  J. Weeks,et al.  Topological lensing in spherical spaces , 2001, gr-qc/0106033.

[107]  B. Roukema A counterexample to claimed COBE constraints on compact toroidal universe models , 2000, astro-ph/0007140.

[108]  J. Bond,et al.  CMB anisotropy in compact hyperbolic universes. II. COBE maps and limits , 1999, astro-ph/9912144.

[109]  J. Bond,et al.  CMB anisotropy in compact hyperbolic universes. I. Computing correlation functions , 1999, astro-ph/9912124.

[110]  B. Roukema COBE and global topology: an example of the application of the identified circles principle , 1999, astro-ph/9910272.

[111]  D. H. Coule,et al.  Quantum cosmology and open universes , 1999, gr-qc/9905056.

[112]  A. Jaffe,et al.  Radical Compression of Cosmic Microwave Background Data , 1998, astro-ph/9808264.

[113]  K. T. Inoue CMB anisotropy in compact hyperbolic universes , 1999, astro-ph/9903446.

[114]  R. Aurich The Fluctuations of the Cosmic Microwave Background for a Compact Hyperbolic Universe , 1999, astro-ph/9903032.

[115]  R. Stompor,et al.  Gravitational lensing of cosmic microwave background anisotropies and cosmological parameter estimation , 1998, astro-ph/9805294.

[116]  E. Scannapieco,et al.  Is the Universe infinite or is it just really big , 1998, astro-ph/9802021.

[117]  U. Toronto,et al.  Estimating the power spectrum of the cosmic microwave background , 1997, astro-ph/9708203.

[118]  W. Thurston,et al.  Three-Dimensional Geometry and Topology, Volume 1 , 1997, The Mathematical Gazette.

[119]  J. Bond,et al.  Computing CMB anisotropy in compact hyperbolic spaces , 1998, astro-ph/9804041.

[120]  W. Thurston,et al.  Three-Dimensional Geometry and Topology, Volume 1: Volume 1 , 1997 .

[121]  A. Banday,et al.  Limits to global rotation and shear from the COBE DMR four-year sky maps , 1997, astro-ph/9701090.

[122]  U. Seljak,et al.  An all sky analysis of polarization in the microwave background , 1996, astro-ph/9609170.

[123]  David N. Spergel,et al.  Circles in the sky : finding topology with the microwave background radiation , 1996, astro-ph/9801212.

[124]  W. Thurston,et al.  Three-Dimensional Geometry and Topology, Volume 1 , 1997, The Mathematical Gazette.

[125]  B. Roukema On determining the topology of the observable Universe via three-dimensional quasar positions , 1996 .

[126]  Bunn,et al.  How Anisotropic is Our Universe? , 1996, Physical review letters.

[127]  M. Lachièze‐Rey,et al.  Cosmic Crystallography , 1996, gr-qc/9604050.

[128]  U. Seljak,et al.  A Line of sight integration approach to cosmic microwave background anisotropies , 1996, astro-ph/9603033.

[129]  E. L. Wright,et al.  Four-Year COBE DMR Cosmic Microwave Background Observations: Maps and Basic Results , 1996, astro-ph/9601067.

[130]  A. Kosowsky Cosmic microwave background polarization , 1995, astro-ph/9501045.

[131]  G. Smoot,et al.  Constraints on the topology of the universe from the 2-year COBE data , 1994, astro-ph/9412003.

[132]  Stevens,et al.  Microwave background anisotropy in a toroidal universe. , 1993, Physical review letters.

[133]  A. Starobinsky New Restrictions on Spatial Topology of the Universe from Microwave Background Temperature Fluctuations , 1993, gr-qc/9305019.

[134]  D. Parsons,et al.  Topologically nontrivial nature of the universe in connection with the anisotropy of the background radiation , 1993 .

[135]  William H. Press,et al.  Numerical recipes in C (2nd ed.): the art of scientific computing , 1992 .

[136]  L. Rezzolla,et al.  Classical and Quantum Gravity , 1996 .

[137]  U. Wichoski,et al.  A SEARCH FOR QSOS TO FIT A COSMOLOGICAL MODEL WITH FLAT, CLOSED SPATIAL SECTIONS , 1987 .

[138]  J. R. Bond,et al.  The statistics of cosmic background radiation fluctuations , 1987 .

[139]  J. Barrow General relativistic cosmological models and the cosmic microwave background radiation , 1986 .

[140]  J. Barrow,et al.  Universal rotation - How large can it be? , 1985 .

[141]  L. Fang,et al.  Is the Periodicity in the Distribution of Quasar Redshifts an Evidence of Multiply Connected Universe , 1983 .

[142]  W. Thurston Three dimensional manifolds, Kleinian groups and hyperbolic geometry , 1982 .

[143]  D. D. Sokolov,et al.  An estimate of the size of the universe from a topological point of view , 1974 .

[144]  S. Hawking,et al.  The Rotation and Distortion of the Universe , 1973 .

[145]  I. McLure Classical and Quantum , 1971 .

[146]  L. M. M.-T. Theory of Probability , 1929, Nature.

[147]  October I Physical Review Letters , 2022 .