Stress induced creep cavity

[1]  Arpan Das Martensite–Void Interaction , 2013 .

[2]  M. Gunjan,et al.  Microstructural studies and remnant life assessment of eleven years service exposed reformer tube , 2011 .

[3]  M. D. Mathew,et al.  A creep model for austenitic stainless steels incorporating cavitation and wedge cracking , 2010 .

[4]  J. Furtado,et al.  Microstructure evolution of HP40-Nb alloys during aging under air at 1000 °C , 2009 .

[5]  B. Radhakrishnan,et al.  MODELING THE EFFECT OF MICROSTRUCTURAL FEATURES ON THE NUCLEATION OF CREEP CAVITIES , 2008 .

[6]  A. Baldan,et al.  Comparative creep damage assessments using the various models , 2004 .

[7]  P. Withers,et al.  Quantification of creep cavitation damage around a crack in a stainless steel pressure vessel , 2004 .

[8]  Mica Grujicic,et al.  Crystal plasticity analysis of the effect of dispersed β-phase on deformation and fracture of lamellar γ+α2 titanium aluminide , 1999 .

[9]  K. Hsia,et al.  The effects of grain size distribution on cavity nucleation and creep deformation in ceramics containing viscous grain boundary phase , 1997 .

[10]  A. Sinharoy,et al.  Micromechanical modelling of microstress fields around carbide precipitates in alloy 600 , 1995 .

[11]  H. Riedel Cavity nucleation at particles on sliding grain boundaries. A shear crack model for grain boundary sliding in creeping polycrystals , 1984 .

[12]  W. Nix,et al.  A study of intergranular cavity growth in Ag + 0.1% MgO at elevated temperatures , 1979 .

[13]  D. Matlock,et al.  A model for creep fracture based on the plastic growth of cavities at the tips of grain boundary wedge cracks , 1977 .

[14]  A. Gurson Continuum Theory of Ductile Rupture by Void Nucleation and Growth: Part I—Yield Criteria and Flow Rules for Porous Ductile Media , 1977 .

[15]  D. Woodford,et al.  An approach to the understanding of brittle behavior of steel at elevated temperature , 1970 .

[16]  D. Hull,et al.  The growth of grain-boundary voids under stress , 1959 .