Submicrometer Silica Spheres Generated by Laser Fuming

The production of agglomerate-free SiO2 particles exhibiting a monomodal distribution of particle sizes of around 300 nm by means of direct laser fuming of micrometric SiO2 powders has been successfully demonstrated. With a 12 kW cw CO2 laser system, a production rate of up to 1 kilogram powder per hour was achieved. Almost ideal spherical amorphous SiO2 particles in a broad particle size distribution between 10 nm and several 100 nm (d50 ≈ 300 nm) were synthesized. Several observations suggest weak agglomeration forces between the particles. A temperature reduction of 200 °C for sintering powder compacts was observed.

[1]  F. Müller,et al.  Preparation of ceramic nanospheres by CO2 laser vaporization (LAVA) , 2011 .

[2]  W. Peukert,et al.  Influence of process parameters on breakage kinetics and grinding limit at the nanoscale , 2011 .

[3]  F. Müller,et al.  Preparation of Spherical Titania Nanoparticles by CO2 Laser Evaporation and Process‐Integrated Particle Coating , 2010 .

[4]  A. Vladár,et al.  Contamination-free imaging by electron induced carbon volatilization in environmental scanning electron microscopy , 2009 .

[5]  O. A. Podsvirov,et al.  Electron-beam modification of the near-surface layers of photosensitive glasses , 2009 .

[6]  J. Melcher,et al.  The power of light: Self-organized formation of macroscopic amounts of silica melts controlled by laser light , 2009 .

[7]  F. Deorsola,et al.  Synthesis of TiO2 nanoparticles through the Gel Combustion process , 2008 .

[8]  V. Parmon,et al.  Production of nanomaterials by vaporizing ceramic targets irradiated by a moderate-power continuous-wave CO2 laser , 2007 .

[9]  Michael T. Postek,et al.  Electron Beam-Induced Sample Contamination in the SEM , 2005, Microscopy and Microanalysis.

[10]  S. Lopatin,et al.  High-temperature thermodynamic properties of the Al2O3-SiO2 system , 2005 .

[11]  Victor I. Masychev,et al.  High-Rate IR Laser Evaporation of Silica Glass , 2003 .

[12]  Sotiris E. Pratsinis,et al.  Synthesis of silica‐carbon particles in a turbulent H2‐air flame aerosol reactor , 2001 .

[13]  L. Mädler,et al.  Flame Synthesis of Nanoparticles , 2001 .

[14]  Mansoo Choi,et al.  CONTROL OF SIZE AND MORPHOLOGY OF NANO PARTICLES USING CO2 LASER DURING FLAME SYNTHESIS , 1999 .

[15]  J. Helble Combustion aerosol synthesis of nanoscale ceramic powders , 1998 .

[16]  R. Laine,et al.  Ultrafine titania by flame spray pyrolysis of a titanatrane complex , 1998 .

[17]  Richard M. Laine,et al.  Ultrafine Spinel Powders by Flame Spray Pyrolysis of a Magnesium Aluminum Double Alkoxide. , 1996 .

[18]  A. Broers,et al.  Characterization of electron beam induced modification of thermally grown SiO2 , 1995 .

[19]  Robert W. Cahn,et al.  Materials science and technology : a comprehensive treatment , 2000 .

[20]  C. Kinoshita,et al.  Radiation-induced amorphization and swelling in ceramics☆ , 1991 .

[21]  J. A. Pask,et al.  REACTION OF FUSED SILICA WITH HYDROGEN GAS , 1982 .

[22]  W. Finnegan,et al.  Aerosol generation to simulate specific industrial fine particle effluents. , 1980, American Industrial Hygiene Association Journal.

[23]  J. Günster,et al.  Laser Sintering of UltraPure SiO2 Crucibles , 2006 .

[24]  J. Hutchison,et al.  An investigation of the electron irradiation of graphite in a helium atmosphere using a modified electron microscope , 1997 .

[25]  R. German Sintering theory and practice , 1996 .

[26]  D. Lide Handbook of Chemistry and Physics , 1992 .

[27]  J. Zarzycki,et al.  Glasses and the vitreous state , 1991 .

[28]  B S Marshall,et al.  A field method for the determination of zinc oxide fume in air. , 1971, The Analyst.