Towards Faster Rates and Oracle Property for Low-Rank Matrix Estimation

We present a unified framework for low-rank matrix estimation with nonconvex penalty. A proximal gradient homotopy algorithm is developed to solve the proposed optimization problem. Theoretically, we first prove that the proposed estimator attains a faster statistical rate than the traditional low-rank matrix estimator with nuclear norm penalty. Moreover, we rigorously show that under a certain condition on the magnitude of the nonzero singular values, the proposed estimator enjoys oracle property (i.e., exactly recovers the true rank of the matrix), besides attaining a faster rate. Extensive numerical experiments on both synthetic and real world datasets corroborate our theoretical findings.

[1]  Tong Zhang,et al.  A General Theory of Concave Regularization for High-Dimensional Sparse Estimation Problems , 2011, 1108.4988.

[2]  Zhihua Zhang,et al.  A Nearly Unbiased Matrix Completion Approach , 2013, ECML/PKDD.

[3]  Emmanuel J. Candès,et al.  Exact Matrix Completion via Convex Optimization , 2008, Found. Comput. Math..

[4]  H. Zou The Adaptive Lasso and Its Oracle Properties , 2006 .

[5]  Zhihua Zhang,et al.  Nonconvex Relaxation Approaches to Robust Matrix Recovery , 2013, IJCAI.

[6]  Lin Xiao,et al.  A Proximal-Gradient Homotopy Method for the Sparse Least-Squares Problem , 2012, SIAM J. Optim..

[7]  Martin J. Wainwright,et al.  Estimation of (near) low-rank matrices with noise and high-dimensional scaling , 2009, ICML.

[8]  V. Koltchinskii,et al.  Nuclear norm penalization and optimal rates for noisy low rank matrix completion , 2010, 1011.6256.

[9]  Jianqing Fan,et al.  Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties , 2001 .

[10]  Shuicheng Yan,et al.  Generalized Nonconvex Nonsmooth Low-Rank Minimization , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[11]  Pablo A. Parrilo,et al.  Guaranteed Minimum-Rank Solutions of Linear Matrix Equations via Nuclear Norm Minimization , 2007, SIAM Rev..

[12]  Zhaoran Wang,et al.  OPTIMAL COMPUTATIONAL AND STATISTICAL RATES OF CONVERGENCE FOR SPARSE NONCONVEX LEARNING PROBLEMS. , 2013, Annals of statistics.

[13]  Jieping Ye,et al.  An accelerated gradient method for trace norm minimization , 2009, ICML '09.

[14]  Ohad Shamir,et al.  Large-Scale Convex Minimization with a Low-Rank Constraint , 2011, ICML.

[15]  A. Tsybakov,et al.  Estimation of high-dimensional low-rank matrices , 2009, 0912.5338.

[16]  T. Tony Cai,et al.  Matrix completion via max-norm constrained optimization , 2013, ArXiv.

[17]  Martin J. Wainwright,et al.  Restricted strong convexity and weighted matrix completion: Optimal bounds with noise , 2010, J. Mach. Learn. Res..

[18]  Feiping Nie,et al.  Robust Matrix Completion via Joint Schatten p-Norm and lp-Norm Minimization , 2012, 2012 IEEE 12th International Conference on Data Mining.

[19]  Roman Vershynin,et al.  Introduction to the non-asymptotic analysis of random matrices , 2010, Compressed Sensing.

[20]  Pradeep Ravikumar,et al.  Exponential Family Matrix Completion under Structural Constraints , 2014, ICML.

[21]  Jieping Ye,et al.  A General Iterative Shrinkage and Thresholding Algorithm for Non-convex Regularized Optimization Problems , 2013, ICML.

[22]  Martin Jaggi,et al.  A Simple Algorithm for Nuclear Norm Regularized Problems , 2010, ICML.

[23]  J WainwrightMartin,et al.  Regularized M-estimators with nonconvexity , 2015 .

[24]  Tommi S. Jaakkola,et al.  Maximum-Margin Matrix Factorization , 2004, NIPS.

[25]  H. Weyl Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen (mit einer Anwendung auf die Theorie der Hohlraumstrahlung) , 1912 .

[26]  Emmanuel J. Candès,et al.  A Singular Value Thresholding Algorithm for Matrix Completion , 2008, SIAM J. Optim..

[27]  Robert Tibshirani,et al.  Spectral Regularization Algorithms for Learning Large Incomplete Matrices , 2010, J. Mach. Learn. Res..

[28]  V. Koltchinskii Von Neumann Entropy Penalization and Low Rank Matrix Estimation , 2010, 1009.2439.

[29]  Xuelong Li,et al.  Fast and Accurate Matrix Completion via Truncated Nuclear Norm Regularization , 2013, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[30]  Po-Ling Loh,et al.  Regularized M-estimators with nonconvexity: statistical and algorithmic theory for local optima , 2013, J. Mach. Learn. Res..

[31]  Emmanuel J. Candès,et al.  The Power of Convex Relaxation: Near-Optimal Matrix Completion , 2009, IEEE Transactions on Information Theory.

[32]  Prateek Jain,et al.  Low-rank matrix completion using alternating minimization , 2012, STOC '13.

[33]  Moritz Hardt,et al.  Understanding Alternating Minimization for Matrix Completion , 2013, 2014 IEEE 55th Annual Symposium on Foundations of Computer Science.

[34]  Jieping Ye,et al.  Rank-One Matrix Pursuit for Matrix Completion , 2014, ICML.

[35]  Cun-Hui Zhang Nearly unbiased variable selection under minimax concave penalty , 2010, 1002.4734.

[36]  Martin J. Wainwright,et al.  A unified framework for high-dimensional analysis of $M$-estimators with decomposable regularizers , 2009, NIPS.

[37]  Inderjit S. Dhillon,et al.  Guaranteed Rank Minimization via Singular Value Projection , 2009, NIPS.

[38]  Adi Shraibman,et al.  Rank, Trace-Norm and Max-Norm , 2005, COLT.

[39]  Prateek Jain,et al.  Fast Exact Matrix Completion with Finite Samples , 2014, COLT.

[40]  Leon Wenliang Zhong,et al.  Fast Low-Rank Matrix Learning with Nonconvex Regularization , 2015, 2015 IEEE International Conference on Data Mining.