On modeling and locomotion of hybrid mechanical systems with impacts
暂无分享,去创建一个
[1] H. Sussmann. A general theorem on local controllability , 1987 .
[2] Anthony M. Bloch,et al. Nonlinear Dynamical Control Systems (H. Nijmeijer and A. J. van der Schaft) , 1991, SIAM Review.
[3] Gerardo Lafferriere,et al. A Differential Geometric Approach to Motion Planning , 1993 .
[4] Naomi Ehrich Leonard,et al. Motion control of drift-free, left-invariant systems on Lie groups , 1995, IEEE Trans. Autom. Control..
[5] B. Brogliato. Nonsmooth Impact Mechanics: Models, Dynamics and Control , 1996 .
[6] Richard M. Murray,et al. Controllability of simple mechanical control systems , 1997 .
[7] Richard M. Murray,et al. Decompositions for control systems on manifolds with an affine connection , 1997 .
[8] A. D. Lewis,et al. Configuration Controllability of Simple Mechanical Control Systems , 1997 .
[9] M. Zefran,et al. Design of switching controllers for systems with changing dynamics , 1998, Proceedings of the 37th IEEE Conference on Decision and Control (Cat. No.98CH36171).
[10] V. Borkar,et al. A unified framework for hybrid control: model and optimal control theory , 1998, IEEE Trans. Autom. Control..
[11] F. Bullo. Nonlinear control of mechanical systems : a Riemannian geometry approach , 1999 .
[12] Andrew D. Lewis,et al. Simple mechanical control systems with constraints , 2000, IEEE Trans. Autom. Control..
[13] Naomi Ehrich Leonard,et al. Controllability and motion algorithms for underactuated Lagrangian systems on Lie groups , 2000, IEEE Trans. Autom. Control..