ON states as resource units for universal quantum computation with photonic architectures

Universal quantum computation using photonic systems requires gates whose Hamiltonians are of order greater than quadratic in the quadrature operators. We first review previous proposals to implement such gates, where specific non-Gaussian states are used as resources in conjunction with entangling gates such as the continuous-variable versions of C-PHASE and C-NOT gates. We then propose ON states which are superpositions of the vacuum and the $N^{th}$ Fock state, for use as non-Gaussian resource states. We show that ON states can be used to implement the cubic and higher-order quadrature phase gates to first order in gate strength. There are several advantages to this method such as reduced number of superpositions in the resource state preparation and greater control over the final gate. We also introduce useful figures of merit to characterize gate performance. Utilising a supply of on-demand resource states one can potentially scale up implementation to greater accuracy, by repeated application of the basic circuit.

[1]  F. Illuminati,et al.  Continuous-variable quantum teleportation with non-Gaussian resources , 2007, 0706.3701.

[2]  E. Knill,et al.  Error analysis for encoding a qubit in an oscillator (5 pages) , 2005, quant-ph/0510107.

[3]  Akira Furusawa,et al.  Quantum Teleportation and Entanglement: A Hybrid Approach to Optical Quantum Information Processing , 2011 .

[4]  M. B. Plenio,et al.  Squeezing the limit: quantum benchmarks for the teleportation and storage of squeezed states , 2008, 0808.2260.

[5]  Hidehiro Yonezawa,et al.  Implementation of a quantum cubic gate by an adaptive non-Gaussian measurement , 2015, 1507.08782.

[6]  Ulrik L Andersen,et al.  Integrated source of broadband quadrature squeezed light. , 2015, Optics express.

[7]  P. Turner,et al.  The Curious Nonexistence of Gaussian 2-Designs , 2011, 1110.1042.

[8]  Gorjan Alagic,et al.  #p , 2019, Quantum information & computation.

[9]  Shota Yokoyama,et al.  Ultra-large-scale continuous-variable cluster states multiplexed in the time domain , 2013, Nature Photonics.

[10]  F. Illuminati,et al.  Optimal estimation of losses at the ultimate quantum limit with non-Gaussian states , 2008, 0807.3958.

[11]  A. Furusawa,et al.  Hybrid discrete- and continuous-variable quantum information , 2014, Nature Physics.

[12]  Akira Furusawa,et al.  Hybrid quantum information processing , 2013, 1409.3719.

[13]  Hidehiro Yonezawa,et al.  Generating superposition of up-to three photons for continuous variable quantum information processing. , 2012, Optics express.

[14]  Yu Shiozawa,et al.  Generation of one-million-mode continuous-variable cluster state by unlimited time-domain multiplexing , 2016, 1606.06688.

[15]  Peter P Rohde,et al.  Measurement-Based Linear Optics. , 2016, Physical review letters.

[16]  Julien Laurat,et al.  Generating Optical Schrödinger Kittens for Quantum Information Processing , 2006, Science.

[17]  Matteo G. A. Paris,et al.  Displacement operator by beam splitter , 1996 .

[18]  Timothy C. Ralph,et al.  Quantum information with continuous variables , 2000, Conference Digest. 2000 International Quantum Electronics Conference (Cat. No.00TH8504).

[19]  Purification of Photon Subtraction from Continuous Squeezed Light by Filtering , 2017, 2018 Conference on Lasers and Electro-Optics (CLEO).

[20]  P. Loock,et al.  Building Gaussian cluster states by linear optics , 2006, quant-ph/0610119.

[21]  Shuntaro Takeda,et al.  Universal Quantum Computing with Measurement-Induced Continuous-Variable Gate Sequence in a Loop-Based Architecture. , 2017, Physical review letters.

[22]  Peter van Loock,et al.  How to decompose arbitrary continuous-variable quantum operations. , 2010, Physical review letters.

[23]  Damien Bonneau,et al.  An On-Chip Homodyne Detector for Measuring Quantum States , 2016, 2018 IEEE Photonics Society Summer Topical Meeting Series (SUM).

[24]  Philippe Grangier,et al.  Increasing entanglement between Gaussian states by coherent photon subtraction. , 2006, Physical review letters.

[25]  Gershon Kurizki,et al.  Improvement on teleportation of continuous variables by photon subtraction via conditional measurement , 2000 .

[26]  Krishna Kumar Sabapathy,et al.  Non-Gaussian operations on bosonic modes of light: Photon-added Gaussian channels , 2016, 1604.07859.

[27]  Barry C. Sanders,et al.  Non-Gaussian ancilla states for continuous variable quantum computation via Gaussian maps , 2006, quant-ph/0606026.

[28]  Shota Yokoyama,et al.  Universal quantum computation with temporal-mode bilayer square lattices , 2017, 1711.08782.

[29]  Akira Furusawa,et al.  Demonstration of a quantum nondemolition sum gate. , 2008, Physical review letters.

[30]  N. Langford,et al.  Distance measures to compare real and ideal quantum processes (14 pages) , 2004, quant-ph/0408063.

[31]  Jialin Zhang,et al.  Quantum-to-quantum Bernoulli factory problem , 2017, Physical Review A.

[32]  Kevin Barraclough,et al.  I and i , 2001, BMJ : British Medical Journal.

[33]  Seth Lloyd,et al.  Gaussian quantum information , 2011, 1110.3234.

[34]  Giulia Ferrini,et al.  Polynomial approximation of non-Gaussian unitaries by counting one photon at a time , 2017, 1703.06693.

[35]  Michal Lipson,et al.  On-Chip Optical Squeezing , 2013, 1309.6371.

[36]  Jeffrey H. Shapiro,et al.  Enhancing quantum entanglement by photon addition and subtraction , 2012 .

[37]  P. Loock,et al.  Measurement-induced optical Kerr interaction , 2013, 1303.6356.

[38]  Seth Lloyd,et al.  Quantum Computation over Continuous Variables , 1999 .

[39]  Matteo G. A. Paris,et al.  Cloning of Gaussian states by linear optics , 2006 .

[40]  Krishna Kumar Sabapathy,et al.  Robustness of non-Gaussian entanglement against noisy amplifier and attenuator environments. , 2011, Physical review letters.

[41]  M. Suzuki,et al.  General theory of higher-order decomposition of exponential operators and symplectic integrators , 1992 .

[42]  S. Glancy,et al.  Methods for Producing Optical Coherent State Superpositions , 2007, 0705.2045.

[43]  Hidehiro Yonezawa,et al.  Experimental realization of a dynamic squeezing gate , 2014, 1409.3754.

[44]  A. Furusawa,et al.  On-chip continuous-variable quantum entanglement , 2016 .

[45]  Shuntaro Takeda,et al.  General implementation of arbitrary nonlinear quadrature phase gates , 2017, 1708.02822.

[46]  N. C. Menicucci,et al.  Fault-tolerant measurement-based quantum computing with continuous-variable cluster states. , 2013, Physical review letters.

[47]  Matteo G. A. Paris,et al.  Teleportation improvement by inconclusive photon subtraction , 2003 .

[48]  Hidehiro Yonezawa,et al.  Emulating quantum cubic nonlinearity , 2013 .

[49]  Akira Furusawa,et al.  Deterministic implementation of weak quantum cubic nonlinearity , 2011, 1105.4950.

[50]  J. Preskill,et al.  Encoding a qubit in an oscillator , 2000, quant-ph/0008040.

[51]  Aram W. Harrow,et al.  Quantum computational supremacy , 2017, Nature.

[52]  Akira Furusawa,et al.  Demonstration of a universal one-way quantum quadratic phase gate , 2009, 0906.3141.

[53]  S. Braunstein,et al.  Quantum Information with Continuous Variables , 2004, quant-ph/0410100.

[54]  A. Gorshkov,et al.  Photon Subtraction by Many-Body Decoherence. , 2017, Physical review letters.

[55]  S. Glancy,et al.  All-optical generation of states for "Encoding a qubit in an oscillator". , 2010, Optics letters.

[56]  G. D’Ariano,et al.  Two-mode heterodyne phase detection. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[57]  George Siopsis,et al.  Repeat-until-success cubic phase gate for universal continuous-variable quantum computation , 2014, 1412.0336.