Light dark matter accumulating in planets: Nuclear scattering

We present, for the first time, a complete treatment of strongly-interacting dark matter capture in planets, taking Earth as an example. We focus on light dark matter and the heating of Earth by dark matter annihilation, addressing a number of crucial dynamical processes which have been overlooked, such as the"ping-pong effect"during dark matter capture. We perform full Monte-Carlo simulations and obtain improved bounds on strongly-interacting dark matter from Earth heating and direct detection experiments for both spin-independent and spin-dependent interactions, while also allowing for the interacting species to make up a sub-component of the cosmological dark matter.

[1]  R. Leane,et al.  Dark Matter Induced Power in Quantum Devices. , 2022, Physical review letters.

[2]  R. Leane,et al.  Floating dark matter in celestial bodies , 2022, Journal of Cosmology and Astroparticle Physics.

[3]  N. Raj,et al.  Neutron star observations of pseudoscalar-mediated dark matter , 2022, Physical Review D.

[4]  Peter Fisher WHAT IS DARK MATTER? , 2022, The Invisible Universe.

[5]  Yu-feng Zhou,et al.  Azimuthal asymmetry in cosmic-ray boosted dark matter flux , 2022, Physical Review D.

[6]  M. Decowski,et al.  Abundances of Uranium and Thorium Elements in Earth Estimated by Geoneutrino Spectroscopy , 2022, Geophysical Research Letters.

[7]  P. Scott,et al.  Simulation of energy transport by dark matter scattering in stars , 2021, Journal of Cosmology and Astroparticle Physics.

[8]  Yu-feng Zhou,et al.  Production and attenuation of cosmic-ray boosted dark matter , 2021, Journal of Cosmology and Astroparticle Physics.

[9]  K. Berggren,et al.  New Constraints on Dark Photon Dark Matter with Superconducting Nanowire Detectors in an Optical Haloscope. , 2021, Physical review letters.

[10]  N. Kurinsky,et al.  Directional detection of light dark matter in superconductors , 2021, Physical Review D.

[11]  N. Raj,et al.  Scattering Searches for Dark Matter in Subhalos: Neutron Stars, Cosmic Rays, and Old Rocks. , 2021, Physical review letters.

[12]  L. Ludhova,et al.  Borexino Results on Neutrinos from the Sun and Earth , 2021, Universe.

[13]  I. Lopes,et al.  Dark matter capture and annihilation in stars: Impact on the red giant branch tip , 2021, Astronomy & Astrophysics.

[14]  C. Levy,et al.  Multicomponent multiscatter capture of dark matter , 2021, Physical Review D.

[15]  N. Bell,et al.  Improved treatment of dark matter capture in white dwarfs , 2021, Journal of Cosmology and Astroparticle Physics.

[16]  S. Palomares-Ruiz,et al.  Evaporation of dark matter from celestial bodies , 2021, Journal of Cosmology and Astroparticle Physics.

[17]  F. Queiroz,et al.  Detecting bosonic dark matter with neutron stars , 2021, Physical Review D.

[18]  R. Leane,et al.  First Analysis of Jupiter in Gamma Rays and a New Search for Dark Matter. , 2021, Physical review letters.

[19]  R. Leane,et al.  Celestial-body focused dark matter annihilation throughout the Galaxy , 2021, Physical Review D.

[20]  K. Berggren,et al.  Determining Dark-Matter-Electron Scattering Rates from the Dielectric Function. , 2021, Physical review letters.

[21]  J. Kopp,et al.  Dark matter, destroyer of worlds: neutrino, thermal, and existential signatures from black holes in the Sun and Earth , 2020, 2012.09176.

[22]  J. Bramante,et al.  Detecting composite dark matter with long-range and contact interactions in gas clouds , 2020, 2010.07240.

[23]  R. Leane,et al.  Exoplanets as Sub-GeV Dark Matter Detectors. , 2020, Physical review letters.

[24]  N. Raj,et al.  Observing the thermalization of dark matter in neutron stars , 2020, 2009.10728.

[25]  B. Dasgupta,et al.  Dark matter capture in celestial objects: light mediators, self-interactions, and complementarity with direct detection , 2020, Journal of Cosmology and Astroparticle Physics.

[26]  L. Roszkowski,et al.  Constraints on dark matter-nucleon effective couplings in the presence of kinematically distinct halo substructures using the DEAP-3600 detector , 2020, Physical Review D.

[27]  C. Ilie,et al.  Comment on “Multiscatter stellar capture of dark matter” , 2020, 2005.05946.

[28]  N. Raj,et al.  Dark kinetic heating of neutron stars from contact interactions with relativistic targets , 2020 .

[29]  N. Raj,et al.  Relativistic capture of dark matter by electrons in neutron stars , 2019, 1911.13293.

[30]  R. Leane,et al.  Warming nuclear pasta with dark matter: kinetic and annihilation heating of neutron star crusts , 2019, Journal of Cosmology and Astroparticle Physics.

[31]  G. Tomar,et al.  A DAMA/Libra-phase2 analysis in terms of WIMP-quark and WIMP-gluon effective interactions up to dimension seven , 2019, 1910.11569.

[32]  F. Kahlhoefer,et al.  Dirac materials for sub-MeV dark matter detection: New targets and improved formalism , 2019, Physical Review D.

[33]  J. Bramante,et al.  Terrestrial and martian heat flow limits on dark matter , 2019, Physical Review D.

[34]  A. Mitridate,et al.  Directional dark matter detection in anisotropic Dirac materials , 2019, Physical Review D.

[35]  A. Polosa,et al.  Sub-MeV dark matter and the Goldstone modes of superfluid helium , 2019, Physical Review D.

[36]  B. Dasgupta,et al.  Dark matter capture in celestial objects: improved treatment of multiple scattering and updated constraints from white dwarfs , 2019, Journal of Cosmology and Astroparticle Physics.

[37]  R. Essig,et al.  Direct detection of strongly interacting sub-GeV dark matter via electron recoils , 2019, Journal of Cosmology and Astroparticle Physics.

[38]  Tom Melia,et al.  Dark matter phonon coupling , 2019, Physical Review D.

[39]  F. D. Juan,et al.  Spectral and optical properties of Ag3Au(Se2,Te2) and dark matter detection , 2019, Journal of Physics: Materials.

[40]  C. Pagliarone,et al.  First results from the CRESST-III low-mass dark matter program , 2019, Physical Review D.

[41]  K. Berggren,et al.  Detecting Sub-GeV Dark Matter with Superconducting Nanowires. , 2019, Physical review letters.

[42]  C. Pagliarone,et al.  Limits on dark matter effective field theory parameters with CRESST-II , 2018, The European Physical Journal C.

[43]  S. Knapen,et al.  Directional detection of light dark matter with polar materials , 2018, Physical Review D.

[44]  T. Koski,et al.  Materials Informatics for Dark Matter Detection , 2018, physica status solidi (RRL) - Rapid Research Letters.

[45]  J. Naganoma,et al.  Dark Matter Search Results from a One Ton-Year Exposure of XENON1T. , 2018, Physical review letters.

[46]  D. Neufeld,et al.  Dark Matter that Interacts with Baryons: Density Distribution within the Earth and New Constraints on the Interaction Cross-section , 2018, The Astrophysical Journal.

[47]  D. Hooper,et al.  Robust constraints and novel gamma-ray signatures of dark matter that interacts strongly with nucleons , 2018, Physical Review D.

[48]  Vera Gluscevic,et al.  Constraints on Scattering of keV-TeV Dark Matter with Protons in the Early Universe. , 2017, Physical review letters.

[49]  S. Knapen,et al.  Detection of light dark matter with optical phonons in polar materials , 2017, Physics Letters B.

[50]  Bradley J. Kavanagh,et al.  Earth scattering of superheavy dark matter: Updated constraints from detectors old and new , 2017, Physical Review D.

[51]  J. Zupan,et al.  Effective field theory for dark matter direct detection up to dimension seven , 2017, Journal of High Energy Physics.

[52]  A. Grushin,et al.  Detection of sub-MeV dark matter with three-dimensional Dirac materials , 2017, 1708.08929.

[53]  Jonathan H. Davis Probing Sub-GeV Mass Strongly Interacting Dark Matter with a Low-Threshold Surface Experiment. , 2017, Physical review letters.

[54]  N. Raj,et al.  Neutron stars at the dark matter direct detection frontier , 2017, 1707.09442.

[55]  C. Pagliarone,et al.  Results on MeV-scale dark matter from a gram-scale cryogenic calorimeter operated above ground , 2017, 1707.06749.

[56]  H. R. Harris,et al.  Low-mass dark matter search with CDMSlite , 2017, 1707.01632.

[57]  C. Kouvaris,et al.  DaMaSCUS: the impact of underground scatterings on direct detection of light dark matter , 2017, 1706.02249.

[58]  N. Raj,et al.  Dark Kinetic Heating of Neutron Stars and an Infrared Window on WIMPs, SIMPs, and Pure Higgsinos. , 2017, Physical review letters.

[59]  Adam Martin,et al.  Multiscatter stellar capture of dark matter , 2017, 1703.04043.

[60]  S. Palomares-Ruiz,et al.  Dark matter in the Sun: scattering off electrons vs nucleons , 2017, 1702.02768.

[61]  K. Freese,et al.  Dark matter capture, subdominant WIMPs, and neutrino observatories , 2016, 1611.09665.

[62]  K. Kong,et al.  Boosted dark matter at the deep underground neutrino experiment , 2016, 1611.09866.

[63]  S. Knapen,et al.  Light dark matter in superfluid helium: Detection with multi-excitation production , 2016, 1611.06228.

[64]  R. Catena WIMP capture and annihilation in the Earth in effective theories , 2016, 1609.08967.

[65]  K. Zurek,et al.  Detectability of Light Dark Matter with Superfluid Helium. , 2016, Physical review letters.

[66]  Jonathan L. Feng,et al.  Detecting dark matter through dark photons from the Sun: Charged particle signatures , 2016 .

[67]  Y. Hochberg,et al.  Detecting superlight dark matter with Fermi-degenerate materials , 2015, 1512.04533.

[68]  Jonathan L. Feng,et al.  Dark photons from the center of the Earth: Smoking-gun signals of dark matter , 2015, 1509.07525.

[69]  M. Misiaszek,et al.  Spectroscopy of geoneutrinos from 2056 days of Borexino data , 2015, 1506.04610.

[70]  Y. Hochberg,et al.  Superconducting Detectors for Superlight Dark Matter. , 2015, Physical review letters.

[71]  K. Kong,et al.  Boosted dark matter signals uplifted with self-interaction , 2014, 1411.6632.

[72]  Nikhil Anand,et al.  Weakly interacting massive particle-nucleus elastic scattering response , 2014 .

[73]  Cora Dvorkin,et al.  Constraining Dark Matter-Baryon Scattering with Linear Cosmology , 2013, 1311.2937.

[74]  A. Schwenk,et al.  Large-scale nuclear structure calculations for spin-dependent WIMP scattering with chiral effective field theory currents , 2013, 1304.7684.

[75]  J. Martín-Albo,et al.  A novel way of constraining WIMPs annihilations in the Sun: MeV neutrinos , 2012, 1208.0834.

[76]  Wick Haxton,et al.  The Effective Field Theory of Dark Matter Direct Detection , 2012, 1203.3542.

[77]  M. Reno,et al.  On the capture of dark matter by neutron stars , 2012, 1201.2400.

[78]  P. Tinyakov,et al.  Can neutron stars constrain dark matter , 2010, 1004.0586.

[79]  D. R. Davies,et al.  Earth's surface heat flux , 2009 .

[80]  A. Zentner High-energy neutrinos from dark matter particle self-capture within the Sun , 2009, 0907.3448.

[81]  W. McDonough,et al.  The K/U ratio of the silicate Earth: Insights into mantle composition, structure and thermal evolution , 2009 .

[82]  S. Adler Planet-bound dark matter and the internal heat of Uranus, Neptune, and hot-Jupiter exoplanets , 2008, 0808.2823.

[83]  F. Iocco Dark Matter Capture and Annihilation on the First Stars: Preliminary Estimates , 2008, 0802.0941.

[84]  P. Steinhardt,et al.  Constraints on the interactions between dark matter and baryons from the x-ray quantum calorimetry , 2007, 0704.0794.

[85]  V.A.Bednyakov,et al.  Nuclear spin structure in dark matter search: The zero momentum transfer limit , 2004, hep-ph/0406218.

[86]  J. P. Castle,et al.  Exclusion limits on the WIMP-nucleon cross section from the cryogenic dark matter search. , 2000, Physical review letters.

[87]  Suzanne Hurter,et al.  Heat flow from the Earth's interior: Analysis of the global data set , 1993 .

[88]  A. Gould Big bang archeology: WIMP capture by the earth at finite optical depth , 1992 .

[89]  H. Villinger,et al.  Heat flow maintained in ocean basins of great age: investigations in the north-equatorial West Pacific , 1990 .

[90]  Andrew Gould,et al.  Evaporation of WIMPs with arbitrary cross sections , 1990 .

[91]  Griest Effect of the Sun's gravity on the distribution and detection of dark matter near the Earth. , 1988, Physical review. D, Particles and fields.

[92]  A. Gould Direct and indirect capture of weakly interacting massive particles by the Earth , 1988 .

[93]  Andrew Gould,et al.  Weakly Interacting Massive Particle Distribution in and Evaporation from the Sun , 1987 .

[94]  Andrew Gould,et al.  Resonant Enhancements in Weakly Interacting Massive Particle Capture by the Earth , 1987 .

[95]  M. Spiro,et al.  A search for strongly interacting dark matter , 1987 .

[96]  D. L. Anderson,et al.  Preliminary reference earth model , 1981 .

[97]  G. Davies Thermal histories of convective Earth models and constraints on radiogenic heat production in the Earth , 1980 .

[98]  C. Jaupart,et al.  The heat flow through oceanic and continental crust and the heat loss of the Earth , 1980 .

[99]  David L. Williams,et al.  The Galapagos Spreading Centre: Lithospheric Cooling and Hydrothermal Circulation , 1974 .

[100]  Steven Earle Physical Geology , 1878, Nature.

[101]  J. Jasensky,et al.  Towards Closing the Window on Strongly Interacting Dark Matter : Far-Reaching Constraints from Earth ’ s Heat Flow , 2009 .

[102]  C. Jaupart,et al.  06 Temperatures , Heat and Energy in the Mantle of the Earth , 2007 .

[103]  A. Gould Direct and Indirect Capture of WIMPS By The Earth , 1998 .

[104]  Alok Misra,et al.  Submitted to , 1987 .

[105]  Andrew Gould,et al.  Resonant Enhancements In WIMP Capture By The Earth , 1987 .