Regression Estimation for a Bounded Response Over a Bounded Region

The usual multiple linear regression model of a response variable on p explanatory variables is considered. It is pointed out that two additional assumptions are often appropriate: that the model is valid only when the explanatory variables lie in some bounded region of Euclidean p-space; and that the expected response is bounded (possibly just from one side). The maximum likelihood estimator (MLE) of the vector of regression coefficients is derived under the assumption that the region of X values is a centered ellipse; this includes both extrapolation and interpolation problems. The MLE is a type of ridge estimator when the region corresponds to extrapolation in a multicollinear problem. The implications of this result for ridge estimation are discussed.

[1]  George Casella,et al.  Minimax Ridge Regression Estimation , 1980 .

[2]  Robert L. Mason,et al.  Some Considerations in the Evaluation of Alternate Prediction Equations , 1979 .

[3]  Ronald D. Snee,et al.  Validation of Regression Models: Methods and Examples , 1977 .

[4]  N. Wermuth,et al.  A Simulation Study of Alternatives to Ordinary Least Squares , 1977 .

[5]  C. K. Liew,et al.  Inequality Constrained Least-Squares Estimation , 1976 .

[6]  R. Snee,et al.  Ridge Regression in Practice , 1975 .

[7]  C. Theobald Generalizations of Mean Square Error Applied to Ridge Regression , 1974 .

[8]  Donald W. Marquaridt Generalized Inverses, Ridge Regression, Biased Linear Estimation, and Nonlinear Estimation , 1970 .

[9]  A. E. Hoerl,et al.  Ridge Regression: Applications to Nonorthogonal Problems , 1970 .

[10]  S. Silvey Multicollinearity and Imprecise Estimation , 1969 .

[11]  N. Draper,et al.  Applied Regression Analysis. , 1967 .

[12]  G. Judge,et al.  Inequality Restrictions in Regression Analysis , 1966 .

[13]  R. L. Plackett,et al.  The Analysis of Variance , 1960 .

[14]  T. W. Anderson,et al.  An Introduction to Multivariate Statistical Analysis , 1959 .

[15]  J. Piehler Zur drehung von gomory-schnitten , 1978 .

[16]  P. J. Brown,et al.  Prediction with shrinkage estimators , 1978 .

[17]  B. F. Swindel Good ridge estimators based on prior information , 1976 .

[18]  A. F. Smith,et al.  Ridge-Type Estimators for Regression Analysis , 1974 .

[19]  Arthur E. Hoerl,et al.  Application of ridge analysis to regression problems , 1962 .

[20]  J. Tobin Estimation of Relationships for Limited Dependent Variables , 1958 .