Inhibitory muscarinic acetylcholine receptors enhance aversive olfactory conditioning in adult Drosophila

Olfactory associative learning in Drosophila is mediated by synaptic plasticity between the Kenyon cells of the mushroom body and their output neurons. Both Kenyon cells and their inputs are cholinergic, yet little is known about the physiological function of muscarinic acetylcholine receptors in learning in adult flies. Here we show that aversive olfactory learning in adult flies requires type A muscarinic acetylcholine receptors (mAChR-A) specifically in the gamma subtype of Kenyon cells. Surprisingly, mAChR-A inhibits odor responses in both Kenyon cell dendrites and axons. Moreover, mAChR-A knockdown impairs the learning-associated depression of odor responses in a mushroom body output neuron. Our results suggest that mAChR-A is required at Kenyon cell presynaptic terminals to depress the synapses between Kenyon cells and their output neurons, and may suggest a role for the recently discovered axo-axonal synapses between Kenyon cells.

[1]  P. Verstreken,et al.  A Single-Cell Transcriptome Atlas of the Aging Drosophila Brain , 2018, Cell.

[2]  R. Bogacz,et al.  Dendritic Integration of Sensory Evidence in Perceptual Decision-Making , 2018, Cell.

[3]  Paola Cognigni,et al.  Do the right thing: neural network mechanisms of memory formation, expression and update in Drosophila , 2018, Current Opinion in Neurobiology.

[4]  S. Waddell,et al.  Cellular diversity in the Drosophila midbrain revealed by single-cell transcriptomics , 2017, bioRxiv.

[5]  Ronald L. Davis,et al.  Dopamine Receptor DAMB Signals via Gq to Mediate Forgetting in Drosophila. , 2017, Cell reports.

[6]  Louis K. Scheffer,et al.  A connectome of a learning and memory center in the adult Drosophila brain , 2017, eLife.

[7]  L. F. Abbott,et al.  The complete connectome of a learning and memory centre in an insect brain , 2017, Nature.

[8]  Ronald L. Davis,et al.  Reciprocal synapses between mushroom body and dopamine neurons form a positive feedback loop required for learning , 2017, eLife.

[9]  Toshihide Hige,et al.  What can tiny mushrooms in fruit flies tell us about learning and memory? , 2017, Neuroscience Research.

[10]  F. Schürmann,et al.  Fine structure of synaptic sites and circuits in mushroom bodies of insect brains. , 2016, Arthropod structure & development.

[11]  Masao Ito,et al.  Reassessment of long-term depression in cerebellar Purkinje cells in mice carrying mutated GluA2 C terminus , 2016, Proceedings of the National Academy of Sciences.

[12]  Yoshinori Aso,et al.  Dopaminergic neurons write and update memories with cell-type-specific rules , 2016, eLife.

[13]  Oliver Barnstedt,et al.  Aversive Learning and Appetitive Motivation Toggle Feed-Forward Inhibition in the Drosophila Mushroom Body , 2016, Neuron.

[14]  Johannes Felsenberg,et al.  Memory-Relevant Mushroom Body Output Synapses Are Cholinergic , 2016, Neuron.

[15]  Raphael Cohn,et al.  Coordinated and Compartmentalized Neuromodulation Shapes Sensory Processing in Drosophila , 2015, Cell.

[16]  Gerald M. Rubin,et al.  Heterosynaptic Plasticity Underlies Aversive Olfactory Learning in Drosophila , 2015, Neuron.

[17]  Lan Huang,et al.  Activation of m1 muscarinic acetylcholine receptor induces surface transport of KCNQ channels through a CRMP-2-mediated pathway , 2015, Journal of Cell Science.

[18]  Eduardo I Tognarelli,et al.  Muscarinic ACh Receptors Contribute to Aversive Olfactory Learning in Drosophila , 2015, Neural plasticity.

[19]  Gerald M. Rubin,et al.  Plasticity-driven individualization of olfactory coding in mushroom body output neurons , 2015, Nature.

[20]  I. Granic,et al.  Neural Rhythms of Change: Long-Term Improvement after Successful Treatment in Children with Disruptive Behavior Problems , 2015, Neural plasticity.

[21]  Shizhong Li,et al.  The A- and B-type muscarinic acetylcholine receptors from Drosophila melanogaster couple to different second messenger pathways. , 2015, Biochemical and biophysical research communications.

[22]  Rafael Yuste,et al.  moco: Fast Motion Correction for Calcium Imaging , 2015, Front. Neuroinform..

[23]  Johannes Felsenberg,et al.  Activity of Defined Mushroom Body Output Neurons Underlies Learned Olfactory Behavior in Drosophila , 2015, Neuron.

[24]  Leslie C Griffith,et al.  A single pair of neurons links sleep to memory consolidation in Drosophila melanogaster , 2015, eLife.

[25]  G. Rubin,et al.  The neuronal architecture of the mushroom body provides a logic for associative learning , 2014, eLife.

[26]  G. Rubin,et al.  Mushroom body output neurons encode valence and guide memory-based action selection in Drosophila , 2014, eLife.

[27]  Ronald L. Davis,et al.  Functional neuroanatomy of Drosophila olfactory memory formation , 2014, Learning & memory.

[28]  Dong-Il Kim,et al.  Voltage-dependent regulation of CaV2.2 channels by Gq-coupled receptor is facilitated by membrane-localized β subunit , 2014, The Journal of general physiology.

[29]  Kei Ito,et al.  A single GABAergic neuron mediates feedback of odor-evoked signals in the mushroom body of larval Drosophila , 2014, Front. Neural Circuits.

[30]  Andrew C. Lin,et al.  Sparse, Decorrelated Odor Coding in the Mushroom Body Enhances Learned Odor Discrimination , 2014, Nature Neuroscience.

[31]  Ian S. Macdonald,et al.  Hexameric GFP and mCherry Reporters for the Drosophila GAL4, Q, and LexA Transcription Systems , 2014, Genetics.

[32]  A. Chiang,et al.  An Octopamine-Mushroom Body Circuit Modulates the Formation of Anesthesia-Resistant Memory in Drosophila , 2013, Current Biology.

[33]  B. Roth,et al.  DREADDs in Drosophila: a pharmacogenetic approach for controlling behavior, neuronal signaling, and physiology in the fly. , 2013, Cell reports.

[34]  Andrew C. Lin,et al.  Different Kenyon Cell Populations Drive Learned Approach and Avoidance in Drosophila , 2013, Neuron.

[35]  Gero Miesenböck,et al.  Odor Discrimination in Drosophila: From Neural Population Codes to Behavior , 2013, Neuron.

[36]  Stefan R. Pulver,et al.  Ultra-sensitive fluorescent proteins for imaging neuronal activity , 2013, Nature.

[37]  Yoshinori Aso,et al.  Essential Role of the Mushroom Body in Context-Dependent CO2 Avoidance in Drosophila , 2013, Current Biology.

[38]  A. Guo,et al.  The GABA system regulates the sparse coding of odors in the mushroom bodies of Drosophila. , 2013, Biochemical and biophysical research communications.

[39]  Robert A. A. Campbell,et al.  Imaging a Population Code for Odor Identity in the Drosophila Mushroom Body , 2013, The Journal of Neuroscience.

[40]  F. Hauser,et al.  Two types of muscarinic acetylcholine receptors in Drosophila and other arthropods , 2013, Cellular and Molecular Life Sciences.

[41]  Kaspar Podgorski,et al.  Ultra-Bright and -Stable Red and Near-Infrared Squaraine Fluorophores for In Vivo Two-Photon Imaging , 2012, PloS one.

[42]  Julie H. Simpson,et al.  A GAL4-driver line resource for Drosophila neurobiology. , 2012, Cell reports.

[43]  Ronald L. Davis,et al.  Dopamine Is Required for Learning and Forgetting in Drosophila , 2012, Neuron.

[44]  Wanhe Li,et al.  Gamma Neurons Mediate Dopaminergic Input during Aversive Olfactory Memory Formation in Drosophila , 2012, Current Biology.

[45]  Nele A. Haelterman,et al.  MiMIC: a highly versatile transposon insertion resource for engineering Drosophila melanogaster genes , 2011, Nature Methods.

[46]  S. Farris Are mushroom bodies cerebellum-like structures? , 2011, Arthropod structure & development.

[47]  G. Rubin,et al.  Mushroom body efferent neurons responsible for aversive olfactory memory retrieval in Drosophila , 2011, Nature Neuroscience.

[48]  Stephan J. Sigrist,et al.  Presynapses in Kenyon Cell Dendrites in the Mushroom Body Calyx of Drosophila , 2011, The Journal of Neuroscience.

[49]  Michael J. Krashes,et al.  A Pair of Inhibitory Neurons Are Required to Sustain Labile Memory in the Drosophila Mushroom Body , 2011, Current Biology.

[50]  G. Laurent,et al.  Normalization for Sparse Encoding of Odors by a Wide-Field Interneuron , 2011, Science.

[51]  R. Huganir,et al.  Reevaluating the Role of LTD in Cerebellar Motor Learning , 2011, Neuron.

[52]  Ronald L. Davis,et al.  Olfactory learning in Drosophila. , 2010, Physiology.

[53]  G. Collingridge,et al.  Muscarinic receptors induce LTD of NMDAR EPSCs via a mechanism involving hippocalcin, AP2 and PSD-95 , 2010, Nature Neuroscience.

[54]  B. Hille,et al.  Modulation of High-Voltage Activated Ca2+ Channels by Membrane Phosphatidylinositol 4,5-Bisphosphate , 2010, Neuron.

[55]  Christian Lüscher,et al.  Group 1 mGluR-Dependent Synaptic Long-Term Depression: Mechanisms and Implications for Circuitry and Disease , 2010, Neuron.

[56]  Susumu Tonegawa,et al.  Presynaptic m1 muscarinic receptors are necessary for mGluR long-term depression in the hippocampus , 2010, Proceedings of the National Academy of Sciences.

[57]  P. Greengard,et al.  Writing Memories with Light-Addressable Reinforcement Circuitry , 2009, Cell.

[58]  Andreas S. Thum,et al.  The Role of Dopamine in Drosophila Larval Classical Olfactory Conditioning , 2009, PloS one.

[59]  Ronald L. Davis,et al.  The GABAergic anterior paired lateral neuron suppresses and is suppressed by olfactory learning , 2008, Nature Neuroscience.

[60]  C. Mulle,et al.  Presynaptic glutamate receptors: physiological functions and mechanisms of action , 2008, Nature Reviews Neuroscience.

[61]  Glenn C. Turner,et al.  Olfactory representations by Drosophila mushroom body neurons. , 2008, Journal of neurophysiology.

[62]  Brad E. Pfeiffer,et al.  Multiple Gq-Coupled Receptors Converge on a Common Protein Synthesis-Dependent Long-Term Depression That Is Affected in Fragile X Syndrome Mental Retardation , 2007, The Journal of Neuroscience.

[63]  S. Waddell,et al.  Sequential Use of Mushroom Body Neuron Subsets during Drosophila Odor Memory Processing , 2007, Neuron.

[64]  Henrik Jörntell,et al.  Synaptic Memories Upside Down: Bidirectional Plasticity at Cerebellar Parallel Fiber-Purkinje Cell Synapses , 2006, Neuron.

[65]  A. Fiala,et al.  Punishment Prediction by Dopaminergic Neurons in Drosophila , 2005, Current Biology.

[66]  Jian Yang,et al.  Phosphotidylinositol 4,5-Bisphosphate Signals Underlie Receptor-Specific Gq/11-Mediated Modulation of N-Type Ca2+ Channels , 2004, The Journal of Neuroscience.

[67]  Ronald L. Davis,et al.  Olfactory Learning , 2004, Neuron.

[68]  Ronald L. Davis,et al.  Spatiotemporal Rescue of Memory Dysfunction in Drosophila , 2003, Science.

[69]  D. O'Dowd,et al.  Fast Synaptic Currents in Drosophila Mushroom Body Kenyon Cells Are Mediated by α-Bungarotoxin-Sensitive Nicotinic Acetylcholine Receptors and Picrotoxin-Sensitive GABA Receptors , 2003, The Journal of Neuroscience.

[70]  A. Wong,et al.  Two-Photon Calcium Imaging Reveals an Odor-Evoked Map of Activity in the Fly Brain , 2003, Cell.

[71]  Gero Miesenböck,et al.  Transmission of Olfactory Information between Three Populations of Neurons in the Antennal Lobe of the Fly , 2002, Neuron.

[72]  S. Ikeda,et al.  A Voltage-Independent Calcium Current Inhibitory Pathway Activated by Muscarinic Agonists in Rat Sympathetic Neurons Requires Both Gαq/11 and Gβγ , 2000, The Journal of Neuroscience.

[73]  M Heisenberg,et al.  Localization of a short-term memory in Drosophila. , 2000, Science.

[74]  N. Strausfeld,et al.  Representation of the calyces in the medial and vertical lobes of cockroach mushroom bodies , 1999, The Journal of comparative neurology.

[75]  P. Salvaterra,et al.  Localization of choline acetyltransferase‐expressing neurons in Drosophila nervous system , 1999, Microscopy research and technique.

[76]  I. Parnas,et al.  Presynaptic effects of muscarine on ACh release at the frog neuromuscular junction , 1999, The Journal of physiology.

[77]  N. Birdsall,et al.  International Union of Pharmacology. XVII. Classification of muscarinic acetylcholine receptors. , 1998, Pharmacological reviews.

[78]  R. Stocker,et al.  Neuroblast ablation in Drosophila P[GAL4] lines reveals origins of olfactory interneurons. , 1997, Journal of neurobiology.

[79]  Paul Antoine Salin,et al.  Use-dependent increases in glutamate concentration activate presynaptic metabotropic glutamate receptors , 1997, Nature.

[80]  Tim Tully,et al.  Associative Learning Disrupted by Impaired Gs Signaling in Drosophila Mushroom Bodies , 1996, Science.

[81]  M. Bellingham,et al.  Presynaptic depression of excitatory synaptic inputs to rat hypoglossal motoneurons by muscarinic M2 receptors. , 1996, Journal of neurophysiology.

[82]  G. Laurent,et al.  GABAergic synapses in the antennal lobe and mushroom body of the locust olfactory system , 1996, The Journal of comparative neurology.

[83]  F. Hannan,et al.  Temporal and spatial expression patterns of two G-protein coupled receptors inDrosophila melanogaster , 1996, Invertebrate Neuroscience.

[84]  William A Catterall,et al.  Muscarinic Modulation of Sodium Current by Activation of Protein Kinase C in Rat Hippocampal Neurons , 1996, Neuron.

[85]  C. Goodman,et al.  Ectopic and increased expression of fasciclin II alters motoneuron growth cone guidance , 1994, Neuron.

[86]  D. Sattelle,et al.  Drosophila nervous system muscarinic acetylcholine receptor: transient functional expression and localization by immunocytochemistry. , 1993, Molecular pharmacology.

[87]  D. A. Brown,et al.  M2 muscarinic receptor‐mediated inhibition of the Ca2+ current in rat magnocellular cholinergic basal forebrain neurones. , 1993, The Journal of physiology.

[88]  R. Sheridan,et al.  Presynaptic M1 muscarinic cholinoceptors mediate inhibition of excitatory synaptic transmission in the hippocampus in vitro , 1990, Neuroscience Letters.

[89]  W. Quinn,et al.  Classical conditioning and retention in normal and mutantDrosophila melanogaster , 1985, Journal of Comparative Physiology A.

[90]  L. Luo,et al.  A protocol for dissecting Drosophila melanogaster brains for live imaging or immunostaining , 2006, Nature Protocols.

[91]  Alcino J. Silva,et al.  Selective cognitive dysfunction in acetylcholine M1 muscarinic receptor mutant mice , 2003, Nature Neuroscience.

[92]  Péter Kása,et al.  Localization of choline acetyltransferase. , 1970, Nature.