Cells change their sensitivity to an EGF morphogen gradient to control EGF-induced gene expression

[1]  M. Herman,et al.  Conversion of the LIN-1 ETS Protein of Caenorhabditis elegans from a SUMOylated Transcriptional Repressor to a Phosphorylated Transcriptional Activator , 2015, Genetics.

[2]  A. Lander,et al.  How Cells Know Where They Are , 2013, Science.

[3]  Jeroen S. van Zon,et al.  Robustness and Epistasis in the C. Elegans Vulval Signaling Network Revealed by Pathway Dosage Modulation , 2022 .

[4]  Alexander van Oudenaarden,et al.  Single molecule fluorescent in situ hybridization (smFISH) of C. elegans worms and embryos. , 2012, WormBook : the online review of C. elegans biology.

[5]  James Briscoe,et al.  Developmental Pattern Formation: Insights from Physics and Biology , 2012, Science.

[6]  Francis Corson,et al.  Geometry, epistasis, and developmental patterning , 2012, Proceedings of the National Academy of Sciences.

[7]  Leonid Kruglyak,et al.  Chromosome-scale selective sweeps shape Caenorhabditis elegans genomic diversity , 2011, Nature Genetics.

[8]  A. Schier,et al.  Morphogen gradients: from generation to interpretation. , 2011, Annual review of cell and developmental biology.

[9]  I. Greenwald,et al.  Spatial Regulation of lag-2 Transcription During Vulval Precursor Cell Fate Patterning in Caenorhabditis eleganslag-2 , 2011, Genetics.

[10]  Edwin Munro,et al.  Quantitative Variation in Autocrine Signaling and Pathway Crosstalk in the Caenorhabditis Vulval Network , 2011, Current Biology.

[11]  Scott A. Rifkin,et al.  Imaging individual mRNA molecules using multiple singly labeled probes , 2008, Nature Methods.

[12]  James Briscoe,et al.  Interpretation of the sonic hedgehog morphogen gradient by a temporal adaptation mechanism , 2007, Nature.

[13]  James Briscoe,et al.  The interpretation of morphogen gradients , 2006, Development.

[14]  Paul W Sternberg,et al.  Intercellular coupling amplifies fate segregation during Caenorhabditis elegans vulval development , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[15]  T. Tiensuu,et al.  lin-1 has both positive and negative functions in specifying multiple cell fates induced by Ras/MAP kinase signaling in C. elegans. , 2005, Developmental biology.

[16]  Dmitri Papatsenko,et al.  Quantitative analysis of binding motifs mediating diverse spatial readouts of the Dorsal gradient in the Drosophila embryo. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[17]  David Harel,et al.  Computational insights into Caenorhabditis elegans vulval development. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[18]  Terence Hwa,et al.  Transcriptional regulation by the numbers: models. , 2005, Current opinion in genetics & development.

[19]  Ning Chen,et al.  The lateral signal for LIN-12/Notch in C. elegans vulval development comprises redundant secreted and transmembrane DSL proteins. , 2004, Developmental cell.

[20]  Iva Greenwald,et al.  Crosstalk Between the EGFR and LIN-12/Notch Pathways in C. elegans Vulval Development , 2004, Science.

[21]  B. J. Hwang,et al.  A cell-specific enhancer that specifies lin-3 expression in the C. elegans anchor cell for vulval development , 2004, Development.

[22]  Andrew G Fraser,et al.  Genome-Wide RNAi of C. elegans Using the Hypersensitive rrf-3 Strain Reveals Novel Gene Functions , 2003, PLoS biology.

[23]  Y. Dong,et al.  Systematic functional analysis of the Caenorhabditis elegans genome using RNAi , 2003, Nature.

[24]  M. Sundaram,et al.  C. elegans EOR-1/PLZF and EOR-2 positively regulate Ras and Wnt signaling and function redundantly with LIN-25 and the SUR-2 Mediator component. , 2002, Genes & development.

[25]  M. Sundaram,et al.  A lin-45 raf enhancer screen identifies eor-1, eor-2 and unusual alleles of Ras pathway genes in Caenorhabditis elegans. , 2002, Genetics.

[26]  J. Kimble,et al.  POP-1 controls axis formation during early gonadogenesis in C. elegans. , 2002, Development.

[27]  V. Ambros,et al.  Cell cycle-dependent sequencing of cell fate decisions in Caenorhabditis elegans vulva precursor cells. , 1999, Development.

[28]  Stuart K. Kim,et al.  The LIN-2/LIN-7/LIN-10 Complex Mediates Basolateral Membrane Localization of the C. elegans EGF Receptor LET-23 in Vulval Epithelial Cells , 1998, Cell.

[29]  S. K. Kim,et al.  Inhibition of Caenorhabditis elegans vulval induction by gap-1 and by let-23 receptor tyrosine kinase. , 1997, Genes & development.

[30]  Stuart K. Kim,et al.  LET-23 Receptor Localization by the Cell Junction Protein LIN-7 during C. elegans Vulval Induction , 1996, Cell.

[31]  H. Horvitz,et al.  The Caenorhabditis elegans gene lin-1 encodes an ETS-domain protein and defines a branch of the vulval induction pathway. , 1995, Genes & development.

[32]  I. Greenwald,et al.  Interchangeability of Caenorhabditis elegans DSL proteins and intrinsic signalling activity of their extracellular domains in vivo. , 1995, Development.

[33]  J. Kimble,et al.  APX-1 can substitute for its homolog LAG-2 to direct cell interactions throughout Caenorhabditis elegans development. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[34]  Thomas R Clandinin,et al.  Different Levels of the C. elegans growth factor LIN-3 promote distinct vulval precursor fates , 1995, Cell.

[35]  Iva Greenwald,et al.  Reciprocal changes in expression of the receptor lin-12 and its ligand lag-2 prior to commitment in a C. elegans cell fate decision , 1994, Cell.

[36]  J Kimble,et al.  lag-2 may encode a signaling ligand for the GLP-1 and LIN-12 receptors of C. elegans. , 1994, Development.

[37]  Paul W. Sternberg,et al.  The gene lin-3 encodes an inductive signal for vulval development in C. elegans , 1992, Nature.

[38]  H. Horvitz,et al.  Caenorhabditis elegans ras gene let-60 acts as a switch in the pathway of vulval induction , 1990, Nature.

[39]  Paul W. Sternberg,et al.  The combined action of two intercellular signaling pathways specifies three cell fates during vulval induction in C. elegans , 1989, Cell.

[40]  N. Munakata [Genetics of Caenorhabditis elegans]. , 1989, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme.

[41]  H. Horvitz,et al.  A genetic pathway for the specification of the vulval cell lineages of Caenorhabditis elegans , 1987, Nature.

[42]  H. Horvitz,et al.  The lin-12 locus specifies cell fates in caenorhabditis elegans , 1983, Cell.

[43]  D. Hirsh,et al.  The postembryonic cell lineages of the hermaphrodite and male gonads in Caenorhabditis elegans. , 1979, Developmental biology.

[44]  J. Sulston,et al.  Post-embryonic cell lineages of the nematode, Caenorhabditis elegans. , 1977, Developmental biology.

[45]  Hernan G. Garcia,et al.  Supplemental Information The Transcription Factor Titration Effect Dictates Level of Gene Expression , 2014 .

[46]  John M. Walker,et al.  C. elegans , 2006, Methods in Molecular Biology.

[47]  M. Labouesse [Caenorhabditis elegans]. , 2003, Medecine sciences : M/S.