Exploratory Subgroup Analytics on Ubiquitous Data

This paper presents exploratory subgroup analytics on ubiquitous data: We propose subgroup discovery and assessment approaches for obtaining interesting descriptive patterns and provide a novel graph-based analysis approach for assessing the relations between the obtained subgroup set. This exploratory visualization approaches allows for the comparison of subgroups according to their relations to other subgroups and to include further parameters, e.g., geo-spatial distribution indicators. We present and discuss analysis results utilizing real-world data given by geo-tagged noise measurements with associated subjective perceptions and a set of tags describing the semantic context.

[1]  R. Mooney,et al.  Impact of Similarity Measures on Web-page Clustering , 2000 .

[2]  Stefan Wrobel,et al.  An Algorithm for Multi-relational Discovery of Subgroups , 1997, PKDD.

[3]  Frank Puppe,et al.  A case-based approach for characterization and analysis of subgroup patterns , 2008, Applied Intelligence.

[4]  Peter Ingwersen,et al.  Developing a Test Collection for the Evaluation of Integrated Search , 2010, ECIR.

[5]  Gregory Piatetsky-Shapiro,et al.  Advances in Knowledge Discovery and Data Mining , 2004, Lecture Notes in Computer Science.

[6]  Gerd Stumme,et al.  Efficient Mining of Association Rules Based on Formal Concept Analysis , 2005, Formal Concept Analysis.

[7]  Florian Lemmerich,et al.  Fast Subgroup Discovery for Continuous Target Concepts , 2009, ISMIS.

[8]  Jiawei Han,et al.  Geographical topic discovery and comparison , 2011, WWW.

[9]  Frank Puppe,et al.  Semi-Automatic Visual Subgroup Mining using VIKAMINE , 2005, J. Univers. Comput. Sci..

[10]  Florian Lemmerich,et al.  VIKAMINE - Open-Source Subgroup Discovery, Pattern Mining, and Analytics , 2012, ECML/PKDD.

[11]  Stefanie N. Lindstaedt,et al.  Recommending Tags for Pictures Based on Text, Visual Content and User Context , 2008, 2008 Third International Conference on Internet and Web Applications and Services.

[12]  Bernhard Ganter,et al.  Formal Concept Analysis , 2013 .

[13]  Jiawei Han,et al.  Mining Knowledge in Geographical , 1998 .

[14]  Michelangelo Ceci,et al.  Time-Slice Density Estimation for Semantic-Based Tourist Destination Suggestion , 2010, ECAI.

[15]  Chengyang Zhang,et al.  Advances in Spatial and Temporal Databases , 2015, Lecture Notes in Computer Science.

[16]  Andreas Hotho,et al.  A generic platform for ubiquitous and subjective data , 2013, UbiComp.

[17]  Frank Puppe,et al.  Exploiting Background Knowledge for Knowledge-Intensive Subgroup Discovery , 2005, IJCAI.

[18]  R. Suganya,et al.  Data Mining Concepts and Techniques , 2010 .

[19]  David J. Crandall,et al.  Beyond co-occurrence: discovering and visualizing tag relationships from geo-spatial and temporal similarities , 2012, WSDM '12.

[20]  Steffen Staab,et al.  Exploiting Flickr Tags and Groups for Finding Landmark Photos , 2009, ECIR.

[21]  Gerd Stumme,et al.  Formal Concept Analysis: foundations and applications , 2005 .

[22]  Florian Lemmerich,et al.  Generic Pattern Trees for Exhaustive Exceptional Model Mining , 2012, ECML/PKDD.

[23]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[24]  Johannes Fürnkranz,et al.  Knowledge Discovery in Databases: PKDD 2006, 10th European Conference on Principles and Practice of Knowledge Discovery in Databases, Berlin, Germany, September 18-22, 2006, Proceedings , 2006, PKDD.

[25]  Roelof van Zwol,et al.  Flickr tag recommendation based on collective knowledge , 2008, WWW.

[26]  Stefan Wrobel,et al.  Listing closed sets of strongly accessible set systems with applications to data , 2010, LWA.

[27]  Arno J. Knobbe,et al.  Diverse subgroup set discovery , 2012, Data Mining and Knowledge Discovery.

[28]  Stephan Winter,et al.  Citizens as Database: Conscious Ubiquity in Data Collection , 2011, SSTD.

[29]  Frank Puppe,et al.  SD-Map - A Fast Algorithm for Exhaustive Subgroup Discovery , 2006, PKDD.

[30]  Ben Shneiderman,et al.  The eyes have it: a task by data type taxonomy for information visualizations , 1996, Proceedings 1996 IEEE Symposium on Visual Languages.

[31]  Willi Klösgen,et al.  Explora: A Multipattern and Multistrategy Discovery Assistant , 1996, Advances in Knowledge Discovery and Data Mining.

[32]  Zheng Liu,et al.  A Survey on Social Image Mining , 2011, ICIC 2011.

[33]  Ramakrishnan Srikant,et al.  Fast algorithms for mining association rules , 1998, VLDB 1998.

[34]  Shusaku Tsumoto,et al.  Foundations of Intelligent Systems, 15th International Symposium, ISMIS 2005, Saratoga Springs, NY, USA, May 25-28, 2005, Proceedings , 2005, ISMIS.

[35]  David Konopnicki,et al.  Microcosm: visual discovery, exploration and analysis of social communities , 2014, IUI Companion '14.

[36]  Florian Lemmerich,et al.  Fast Discovery of Relevant Subgroup Patterns , 2010, FLAIRS Conference.

[37]  Peter A. Flach,et al.  Evaluation Measures for Multi-class Subgroup Discovery , 2009, ECML/PKDD.

[38]  Andreas Hotho,et al.  Ubicon and its applications for ubiquitous social computing , 2014, New Rev. Hypermedia Multim..

[39]  Jiawei Han,et al.  Data Mining: Concepts and Techniques , 2000 .

[40]  Florian Lemmerich,et al.  Exploratory pattern mining on social media using geo-references and social tagging information , 2013, Int. J. Web Sci..

[41]  Johannes Fürnkranz,et al.  From Local Patterns to Global Models: The LeGo Approach to Data Mining , 2008 .

[42]  Frank Puppe,et al.  A Methodological View on Knowledge-Intensive Subgroup Discovery , 2006, EKAW.

[43]  Jiawei Han,et al.  Frequent pattern mining: current status and future directions , 2007, Data Mining and Knowledge Discovery.

[44]  Steffen Staab,et al.  Managing Knowledge in a World of Networks , 2008 .

[45]  Ramakrishnan Srikant,et al.  Fast Algorithms for Mining Association Rules in Large Databases , 1994, VLDB.

[46]  Bernhard Ganter,et al.  Formal Concept Analysis, 6th International Conference, ICFCA 2008, Montreal, Canada, February 25-28, 2008, Proceedings , 2008, International Conference on Formal Concept Analysis.

[47]  Anil K. Jain,et al.  Data clustering: a review , 1999, CSUR.

[48]  Reinhard Diestel,et al.  Graph Theory , 1997 .

[49]  H. Hotelling The Generalization of Student’s Ratio , 1931 .

[50]  Michelangelo Ceci,et al.  Discovery of spatial association rules in geo-referenced census data: A relational mining approach , 2003, Intell. Data Anal..

[51]  Mor Naaman,et al.  Methods for extracting place semantics from Flickr tags , 2009, TWEB.

[52]  Silvia Santini,et al.  On the use of sensor nodes and mobile phones for the assessment of noise pollution levels in urban environments , 2009, 2009 Sixth International Conference on Networked Sensing Systems (INSS).

[53]  Martin Atzmüller,et al.  Mining social media: key players, sentiments, and communities , 2012, WIREs Data Mining Knowl. Discov..