Mixing-Plane Method for Flutter Computation in Multistage Turbomachines

The mixing-plane method for calculating the three-dimensional flow through multistage turbomachinery is used to perform flutter analysis on a single stage transonic compressor. The turbomachine considered is composed of an inlet guide vane (IGV) and a compressor blade (NASA Rotor 67). The mixing-plane boundary condition enables steady and unsteady computation of the flow through multiple blade rows. This allows incorporation of multi-stage effects without having to perform computationally intensive fully unsteady multi-stage flow computations. Forced motion flutter computations are performed for both the isolated compressor and with the IGV. Comparison between the damping ratio shows a decrease in stability when the IGV is included in the computation.