Controller tuning using evolutionary multi-objective optimisation: Current trends and applications

Abstract Control engineering problems are generally multi-objective problems; meaning that there are several specifications and requirements that must be fulfilled. A traditional approach for calculating a solution with the desired trade-off is to define an optimisation statement. Multi-objective optimisation techniques deal with this problem from a particular perspective and search for a set of potentially preferable solutions; the designer may then analyse the trade-offs among them, and select the best solution according to his/her preferences. In this paper, this design procedure based on evolutionary multiobjective optimisation (EMO) is presented and significant applications on controller tuning are discussed. Throughout this paper it is noticeable that EMO research has been developing towards different optimisation statements, but these statements are not commonly used in controller tuning. Gaps between EMO research and EMO applications on controller tuning are therefore detected and suggested as potential trends for research.

[1]  Kaisa Miettinen,et al.  Visualizing the Pareto Frontier , 2008, Multiobjective Optimization.

[2]  Carlos A. Coello Coello,et al.  Constraint-handling in nature-inspired numerical optimization: Past, present and future , 2011, Swarm Evol. Comput..

[3]  Dervis Karaboga,et al.  A comprehensive survey: artificial bee colony (ABC) algorithm and applications , 2012, Artificial Intelligence Review.

[4]  ZitzlerE.,et al.  Multiobjective evolutionary algorithms , 1999 .

[5]  Gregory D. Buckner,et al.  Multi-objective control optimization for semi-active vehicle suspensions , 2011 .

[6]  K.J. ÅSTRÖM,et al.  Design of PI Controllers based on Non-Convex Optimization , 1998, Autom..

[7]  Kim Fung Man,et al.  Multiobjective Optimization , 2011, IEEE Microwave Magazine.

[8]  J. Böhm,et al.  Robust PID control , 1993 .

[9]  M. Alamgir Hossain,et al.  Multi-objective optimal chemotherapy control model for cancer treatment , 2010, Medical & Biological Engineering & Computing.

[10]  Carlos A. Coello Coello,et al.  A Review of Techniques for Handling Expensive Functions in Evolutionary Multi-Objective Optimization , 2010 .

[11]  William L. Luyben,et al.  Simple method for tuning SISO controllers in multivariable systems , 1986 .

[12]  G. Feng,et al.  A Survey on Analysis and Design of Model-Based Fuzzy Control Systems , 2006, IEEE Transactions on Fuzzy Systems.

[13]  Carlos A. Coello Coello,et al.  Handling preferences in evolutionary multiobjective optimization: a survey , 2000, Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512).

[14]  Yaochu Jin,et al.  Multi-Objective Machine Learning , 2006, Studies in Computational Intelligence.

[15]  Kalyanmoy Deb,et al.  Dynamic multiobjective optimization problems: test cases, approximations, and applications , 2004, IEEE Transactions on Evolutionary Computation.

[16]  Peter J. Fleming,et al.  Fuzzy scheduling control of a gas turbine aero-engine: a multiobjective approach , 2002, IEEE Trans. Ind. Electron..

[17]  Matthias Ehrgott,et al.  Multiple criteria decision analysis: state of the art surveys , 2005 .

[18]  David W. Coit,et al.  Multi-objective optimization using genetic algorithms: A tutorial , 2006, Reliab. Eng. Syst. Saf..

[19]  Carlos Cruz,et al.  Optimization in dynamic environments: a survey on problems, methods and measures , 2011, Soft Comput..

[20]  Victor M. Zavala,et al.  Stability of multiobjective predictive control: A utopia-tracking approach , 2012, Autom..

[21]  Eduard Ushakov Evolutionary algorithms in control systems engineering , 2010, 2010 International Conference on Modern Problems of Radio Engineering, Telecommunications and Computer Science (TCSET).

[22]  Francisco Herrera,et al.  A multi-objective evolutionary algorithm for an effective tuning of fuzzy logic controllers in heating, ventilating and air conditioning systems , 2012, Applied Intelligence.

[23]  Carlos A. Coello Coello,et al.  Pareto-adaptive -dominance , 2007, Evolutionary Computation.

[24]  Rajkumar Roy,et al.  Soft Computing in Industrial Applications , 2000, Springer London.

[25]  S. Panda Multi-objective PID controller tuning for a FACTS-based damping stabilizer using Non-dominated Sorting Genetic Algorithm-II , 2011 .

[26]  Rajkumar Roy,et al.  Recent advances in engineering design optimisation: Challenges and future trends , 2008 .

[27]  P BonissonePiero,et al.  Multicriteria decision making (MCDM) , 2009 .

[28]  Wenyin Gong,et al.  An efficient multiobjective differential evolution algorithm for engineering design , 2009 .

[29]  P. Suganthan,et al.  Problem Definitions and Evaluation Criteria for the CEC 2010 Competition on Constrained Real- Parameter Optimization , 2010 .

[30]  Tore Hägglund,et al.  The future of PID control , 2000 .

[31]  Xavier Blasco Ferragud,et al.  A new graphical visualization of n-dimensional Pareto front for decision-making in multiobjective optimization , 2008, Inf. Sci..

[32]  Kalyanmoy Deb,et al.  Advances in Evolutionary Multi-objective Optimization , 2012, SSBSE.

[33]  Carlos A. Coello Coello,et al.  Evolutionary multi-objective optimization: a historical view of the field , 2006, IEEE Comput. Intell. Mag..

[34]  Gilberto Reynoso-Meza,et al.  Diseño Multiobjetivo de controladores PID para el Benchmark de Control 2008-2009 , 2009 .

[35]  JinYaochu,et al.  Pareto-Based Multiobjective Machine Learning , 2008 .

[36]  Hisao Ishibuchi,et al.  Evolutionary many-objective optimization: A short review , 2008, 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence).

[37]  Kaveh Amouzgar,et al.  Multi-objective optimization using Genetic Algorithms , 2012 .

[38]  A. J. Dentsoras,et al.  Soft computing in engineering design - A review , 2008, Adv. Eng. Informatics.

[39]  DebK.,et al.  A fast and elitist multiobjective genetic algorithm , 2002 .

[40]  Carlos A. Coello Coello,et al.  Multi-objective Optimization Using Differential Evolution: A Survey of the State-of-the-Art , 2008 .

[41]  Shiow-Fen Hwang,et al.  A Novel Intelligent Multiobjective Simulated Annealing Algorithm for Designing Robust PID Controllers , 2008, IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans.

[42]  Ian Griffin,et al.  Linear matrix inequalities and evolutionary optimization in multiobjective control , 2006, Int. J. Syst. Sci..

[43]  Piero P. Bonissone,et al.  Multicriteria decision making (mcdm): a framework for research and applications , 2009, IEEE Computational Intelligence Magazine.

[44]  Jasbir S. Arora,et al.  Survey of multi-objective optimization methods for engineering , 2004 .

[45]  Frederico G. Guimarães,et al.  Pareto Cone ε-Dominance: Improving Convergence and Diversity in Multiobjective Evolutionary Algorithms , 2011, EMO.

[46]  Carlos A. Coello Coello,et al.  THEORETICAL AND NUMERICAL CONSTRAINT-HANDLING TECHNIQUES USED WITH EVOLUTIONARY ALGORITHMS: A SURVEY OF THE STATE OF THE ART , 2002 .

[47]  F. Glover,et al.  Handbook of Metaheuristics , 2019, International Series in Operations Research & Management Science.

[48]  Francisco Herrera,et al.  Editorial scalability of evolutionary algorithms and other metaheuristics for large-scale continuous optimization problems , 2011, Soft Comput..

[49]  Lalit M. Patnaik,et al.  Genetic algorithms: a survey , 1994, Computer.

[50]  B. Suman,et al.  A survey of simulated annealing as a tool for single and multiobjective optimization , 2006, J. Oper. Res. Soc..

[51]  K Srinivas Multi-Objective Optimization Using Differential Evolution , 2014 .

[52]  Gilberto Reynoso-Meza,et al.  Algoritmos Evolutivos y su empleo en el ajuste de controladores del tipo PID: Estado Actual y Perspectivas , 2013 .

[53]  Ponnuthurai N. Suganthan,et al.  Multi-objective robust PID controller tuning using two lbests multi-objective particle swarm optimization , 2011, Inf. Sci..

[54]  Ramon Vilanova,et al.  Control PID robusto: Una visión panorámica , 2011 .

[55]  Tore Hägglund,et al.  Design of PID controllers based on constrained optimization , 1999 .

[56]  YangQuan Chen,et al.  Tuning and auto-tuning of fractional order controllers for industry applications , 2008 .

[57]  Xavier Blasco Ferragud,et al.  Multiobjective evolutionary algorithms for multivariable PI controller design , 2012, Expert Syst. Appl..

[58]  Peter J. Fleming,et al.  Multiobjective analysis for the design and control of an electromagnetic valve actuator , 2007 .

[59]  P. N. Suganthan,et al.  Differential Evolution: A Survey of the State-of-the-Art , 2011, IEEE Transactions on Evolutionary Computation.

[60]  Furong Gao,et al.  Multi-objective optimization and selection for the PI control of ALSTOM gasifier problem , 2010 .

[61]  Thomas Stützle,et al.  Ant Colony Optimization: Overview and Recent Advances , 2018, Handbook of Metaheuristics.

[62]  Xavier Blasco Ferragud,et al.  Design of Continuous Controllers Using a Multiobjective Differential Evolution Algorithm with Spherical Pruning , 2010, EvoApplications.

[63]  Francisco Herrera,et al.  A Review of the Application of Multiobjective Evolutionary Fuzzy Systems: Current Status and Further Directions , 2013, IEEE Transactions on Fuzzy Systems.

[64]  Peter J. Fleming,et al.  Evolutionary algorithms in control systems engineering: a survey , 2002 .

[65]  Alf Isaksson,et al.  Derivative filter is an integral part of PID design , 2002 .

[66]  A. E. Eiben,et al.  On Evolutionary Exploration and Exploitation , 1998, Fundam. Informaticae.

[67]  Peter J. Fleming,et al.  Multiobjective optimization and multiple constraint handling with evolutionary algorithms. I. A unified formulation , 1998, IEEE Trans. Syst. Man Cybern. Part A.

[68]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[69]  Kay Chen Tan,et al.  Hybrid Multiobjective Evolutionary Design for Artificial Neural Networks , 2008, IEEE Transactions on Neural Networks.

[70]  Nader Nariman-zadeh,et al.  Pareto optimal robust design of fractional-order PID controllers for systems with probabilistic uncertainties , 2012 .

[71]  Magdalene Marinaki,et al.  Fuzzy control optimized by a Multi-Objective Particle Swarm Optimization algorithm for vibration suppression of smart structures , 2011 .

[72]  Francisco Rodríguez,et al.  Multiobjective hierarchical control architecture for greenhouse crop growth , 2012, Autom..

[73]  Layne T. Watson,et al.  Multidisciplinary Design Optimization , 2009, Encyclopedia of Optimization.

[74]  P. N. Suganthan,et al.  Ensemble of Constraint Handling Techniques , 2010, IEEE Transactions on Evolutionary Computation.

[75]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[76]  A Coello CoelloC. Evolutionary multi-objective optimization , 2006 .

[77]  Liang Huang,et al.  Multiobjective Optimization for Controller Design , 2008 .

[78]  Ian C. Parmee,et al.  Preferences and their application in evolutionary multiobjective optimization , 2002, IEEE Trans. Evol. Comput..

[79]  Peter J. Fleming,et al.  Automotive drive by wire controller design by multi-objective techniques , 2005 .

[80]  Zbigniew Michalewicz,et al.  Quo Vadis, Evolutionary Computation? - On a Growing Gap between Theory and Practice , 2012, WCCI.

[81]  Christian Igel,et al.  Multi-Objective Optimization of Support Vector Machines , 2006, Multi-Objective Machine Learning.

[82]  Saeed Tavakoli,et al.  Multi-objective optimization approach to the PI tuning problem , 2007, 2007 IEEE Congress on Evolutionary Computation.

[83]  Hyun-Su Kim,et al.  Fuzzy Control of Base‐Isolation System Using Multi‐Objective Genetic Algorithm , 2006, Comput. Aided Civ. Infrastructure Eng..

[84]  Wen Tan,et al.  Tuning of PID controllers for boiler-turbine units. , 2004, ISA transactions.

[85]  Carlos A. Coello Coello,et al.  An Introduction to Multi-Objective Particle Swarm Optimizers , 2011 .

[86]  Chi-Keong Goh,et al.  Computational Intelligence in Expensive Optimization Problems , 2010 .

[87]  Xavier Blasco Ferragud,et al.  Comparison of design concepts in multi-criteria decision-making using level diagrams , 2013, Inf. Sci..

[88]  Xavier Blasco Ferragud,et al.  Multiobjective optimization algorithm for solving constrained single objective problems , 2010, IEEE Congress on Evolutionary Computation.

[89]  Mikel Larrea,et al.  Intelligent Multi-Objective Nonlinear Model Predictive Control (iMO-NMPC): Towards the 'on-line' optimization of highly complex control problems , 2012, Expert Syst. Appl..

[90]  Alberto Bemporad,et al.  Multiobjective model predictive control , 2009, Autom..

[91]  Peter J. Fleming,et al.  Design of robust fuzzy-logic control systems by multi-objective evolutionary methods with hardware in the loop , 2004, Eng. Appl. Artif. Intell..

[92]  Kenneth Sörensen,et al.  Metaheuristics - the metaphor exposed , 2015, Int. Trans. Oper. Res..

[93]  Rajiv Tiwari,et al.  Design optimization of double-acting hybrid magnetic thrust bearings with control integration using multi-objective evolutionary algorithms , 2009 .

[94]  Bernhard Sendhoff,et al.  Pareto-Based Multiobjective Machine Learning: An Overview and Case Studies , 2008, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[95]  Apu Kumar Saha,et al.  Multi Criteria Decision Making , 2016 .

[96]  Kaisa Miettinen,et al.  Nonlinear multiobjective optimization , 1998, International series in operations research and management science.

[97]  F. Michiel Meeuse,et al.  Closed-loop controllability analysis of process designs: Application to distillation column design , 2002 .

[98]  Mark Harman,et al.  Search-based software engineering , 2001, Inf. Softw. Technol..

[99]  K. Deb An Efficient Constraint Handling Method for Genetic Algorithms , 2000 .

[100]  Qingfu Zhang,et al.  Multiobjective evolutionary algorithms: A survey of the state of the art , 2011, Swarm Evol. Comput..

[101]  Alberto Herreros,et al.  Design of PID-type controllers using multiobjective genetic algorithms. , 2002, ISA transactions.

[102]  Nader Nariman-Zadeh,et al.  Reliability-based robust Pareto design of linear state feedback controllers using a multi-objective uniform-diversity genetic algorithm (MUGA) , 2010, Expert Syst. Appl..

[103]  Jürgen Branke,et al.  Optimization in Dynamic Environments , 2002 .

[104]  Joaquim R. R. A. Martins,et al.  Multidisciplinary design optimization: A survey of architectures , 2013 .

[105]  Witold Pedrycz,et al.  A Multiobjective Design of a Patient and Anaesthetist-Friendly Neuromuscular Blockade Controller , 2007, IEEE Transactions on Biomedical Engineering.

[106]  Alberto Herreros,et al.  MRCD: a genetic algorithm for multiobjective robust control design ☆ , 2002 .

[107]  Peter J. Fleming,et al.  Multiobjective optimization and multiple constraint handling with evolutionary algorithms. II. Application example , 1998, IEEE Trans. Syst. Man Cybern. Part A.

[108]  Kai Keng Ang,et al.  A synergy of econometrics and computational methods (GARCH-RNFS) for volatility forecasting , 2010, IEEE Congress on Evolutionary Computation.

[109]  Peter J. Fleming,et al.  Controllability analysis of multi objective control systems , 2002, Proceedings. IEEE International Symposium on Computer Aided Control System Design.

[110]  Alfred Inselberg,et al.  The plane with parallel coordinates , 1985, The Visual Computer.

[111]  Valera GarcíaJuan José,et al.  Intelligent Multi-Objective Nonlinear Model Predictive Control (iMO-NMPC) , 2012 .

[112]  Bernhard Sendhoff,et al.  Robust Optimization - A Comprehensive Survey , 2007 .

[113]  Belaid Aouni,et al.  Group Decision Makers' Preferences Modelling within the Goal Programming Model: An Overview and a Typology , 2012 .

[114]  FarinaM.,et al.  Dynamic multiobjective optimization problems , 2004 .

[115]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[116]  Kalyanmoy Deb,et al.  Parallelizing multi-objective evolutionary algorithms: cone separation , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).

[117]  Ponnuthurai N. Suganthan,et al.  Real-parameter evolutionary multimodal optimization - A survey of the state-of-the-art , 2011, Swarm Evol. Comput..

[118]  Andrew Pike,et al.  Alstom Benchmark Challenge II on Gasifier Control , 2006 .

[119]  OzturkCelal,et al.  A comprehensive survey , 2014 .

[120]  Christopher A. Mattson,et al.  Pareto Frontier Based Concept Selection Under Uncertainty, with Visualization , 2005 .

[121]  Kay Soon Low,et al.  A Multiobjective Genetic Algorithm for Optimizing the Performance of Hard Disk Drive Motion Control System , 2007, IEEE Transactions on Industrial Electronics.

[122]  Peter J. Fleming,et al.  On the Evolutionary Optimization of Many Conflicting Objectives , 2007, IEEE Transactions on Evolutionary Computation.

[123]  Benjamín Kuchen,et al.  Supervisory control of flotation columns using multi-objective optimization , 2011 .

[124]  Mohammad S. Alam,et al.  Designing feedforward command shapers with multi-objective genetic optimisation for vibration control of a single-link flexible manipulator , 2008, Eng. Appl. Artif. Intell..

[125]  Eckart Zitzler,et al.  Indicator-Based Selection in Multiobjective Search , 2004, PPSN.

[126]  Manuel P. Cuéllar,et al.  Multiobjective Hybrid Optimization and Training of Recurrent Neural Networks , 2008, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[127]  Goldberg,et al.  Genetic algorithms , 1993, Robust Control Systems with Genetic Algorithms.