Nanonewton optical force trap employing anti-reflection coated, high-refractive-index titania microspheres

Researchers demonstrate an ultrastrong optical trap capable of operating with nanonewton optical forces by employing tailor-made high-refractive-index particles. This work could could lead to the development of highly efficient light-driven machines.

[1]  David G. Grier,et al.  Optical tweezers in colloid and interface science , 1997 .

[2]  Anita Jannasch,et al.  Measuring the complete force field of an optical trap. , 2011, Optics letters.

[3]  L. Oddershede,et al.  Optimizing immersion media refractive index improves optical trapping by compensating spherical aberrations. , 2007, Optics letters.

[4]  Michael P. Sheetz,et al.  Single pilus motor forces exceed 100 pN , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[5]  E. Schäffer,et al.  Inertial effects of a small Brownian particle cause a colored power spectral density of thermal noise. , 2011, Physical review letters.

[6]  Tomáš Čižmár,et al.  Shaping the future of manipulation , 2011 .

[7]  Carlos Bustamante,et al.  Inter-Subunit Coordination in a Homomeric Ring-ATPase , 2009, Nature.

[8]  Jesper Glückstad,et al.  Optical manipulation: sculpting the object , 2011 .

[9]  Steven M Block,et al.  Optical tweezers study life under tension. , 2011, Nature photonics.

[10]  Jonathon Howard,et al.  Surface forces and drag coefficients of microspheres near a plane surface measured with optical tweezers. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[11]  Norman R. Heckenberg,et al.  Optical tweezers computational toolbox , 2007 .

[12]  E. Schäffer,et al.  Optical tweezers with millikelvin precision of temperature-controlled objectives and base-pair resolution. , 2009, Optics express.

[13]  S. Lindquist,et al.  Optical trapping with high forces reveals unexpected behaviors of prion fibrils , 2010, Nature Structural &Molecular Biology.

[14]  U. Steiner,et al.  Nanophase-separated polymer films as high-performance antireflection coatings , 1999, Science.

[15]  Christoph F Schmidt,et al.  Laser-induced heating in optical traps. , 2003, Biophysical journal.

[16]  Alfons van Blaaderen,et al.  High trapping forces for high-refractive index particles trapped in dynamic arrays of counterpropagating optical tweezers. , 2008, Applied optics.

[17]  Jonathon Howard,et al.  Optical trapping of coated microspheres. , 2008, Optics express.

[18]  H. Rubinsztein-Dunlop,et al.  Antireflection coating for improved optical trapping , 2008 .

[19]  Romain Quidant,et al.  Plasmon nano-optical tweezers , 2011 .

[20]  Erik Schäffer,et al.  Under-filling trapping objectives optimizes the use of the available laser power in optical tweezers. , 2011, Optics express.

[21]  Seung-Man Yang,et al.  Characterizing and tracking single colloidal particles with video holographic microscopy. , 2007, Optics express.

[22]  C. Bustamante,et al.  Overstretching B-DNA: The Elastic Response of Individual Double-Stranded and Single-Stranded DNA Molecules , 1996, Science.

[23]  J. Glückstad,et al.  Wave-guided optical waveguides. , 2012, Optics express.

[24]  Anita Jannasch,et al.  Seeded growth of titania colloids with refractive index tunability and fluorophore-free luminescence. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[25]  Francesco S. Pavone,et al.  Calibration of optical tweezers with positional detection in the back focal plane , 2006, physics/0603037.

[26]  Pál Ormos,et al.  Complex micromachines produced and driven by light , 2002, CLEO 2002.

[27]  Kishan Dholakia,et al.  Optical Tweezers With Increased Axial Trapping Efficiency , 1998 .

[28]  Miles J. Padgett,et al.  Tweezers with a twist , 2011 .

[29]  L. Forró,et al.  Resonances arising from hydrodynamic memory in Brownian motion , 2011, Nature.

[30]  L. Fruk,et al.  Bifunctional catechol based linkers for modification of TiO2 surfaces , 2012 .