Porphyrinic coordination polymer-type materials as heterogeneous catalysts in catechol oxidation

[1]  Zhaohui Li,et al.  Catalysis and photocatalysis by metal organic frameworks. , 2018, Chemical Society reviews.

[2]  Hua Zhang,et al.  Two-dimensional metal-organic framework nanosheets: synthesis and applications. , 2018, Chemical Society reviews.

[3]  Allison M. Rice,et al.  Photochemistry and photophysics of MOFs: steps towards MOF-based sensing enhancements. , 2018, Chemical Society reviews.

[4]  J. Hupp,et al.  Bifunctional Porphyrin-Based Nano-Metal-Organic Frameworks: Catalytic and Chemosensing Studies. , 2018, Inorganic chemistry.

[5]  A. D. G. Firmino,et al.  Metal–Organic Frameworks assembled from tetraphosphonic ligands and lanthanides , 2018 .

[6]  X. Ren,et al.  A metalloporphyrin-based porous organic polymer as an efficient catalyst for the catalytic oxidation of olefins and arylalkanes. , 2017, Dalton transactions.

[7]  D. Dou,et al.  Porphyrin photosensitizers in photodynamic therapy and its applications , 2017, Oncotarget.

[8]  Ricardo F. Mendes,et al.  Copper–Porphyrin–Metal–Organic Frameworks as Oxidative Heterogeneous Catalysts , 2017 .

[9]  Teppei Yamada,et al.  Zirconium-based Metal–Organic Frameworks with N-Confused Porphyrins: Synthesis, Structures, and Optical Properties , 2017 .

[10]  F. Kapteijn,et al.  Metal–organic and covalent organic frameworks as single-site catalysts , 2017, Chemical Society reviews.

[11]  M. Simões,et al.  Synthesis, characterization and catalytic activity under homogeneous conditions of ethylene glycol substituted porphyrin manganese(III) complexes , 2017 .

[12]  J. Tomé,et al.  Synthesis and anion binding properties of porphyrins and related compounds , 2016 .

[13]  Diego A. Gómez-Gualdrón,et al.  Framework-Topology-Dependent Catalytic Activity of Zirconium-Based (Porphinato)zinc(II) MOFs. , 2016, Journal of the American Chemical Society.

[14]  M. Simões,et al.  Porphyrin-Based Metal-Organic Frameworks as Heterogeneous Catalysts in Oxidation Reactions , 2016, Molecules.

[15]  François-Xavier Coudert,et al.  Defects and disorder in metal organic frameworks. , 2016, Dalton transactions.

[16]  A. Tomé,et al.  Porphyrin Macrocycle Modification: Pyrrole Ring-Contracted or -Expanded Porphyrinoids , 2016, Molecules.

[17]  Youngmee Kim,et al.  Porphyrinic metal–organic frameworks from custom-designed porphyrins , 2016 .

[18]  Róbert Csonka,et al.  Oxidant dependent oxidation of copper bound catecholate: Catecholase versus catechol dioxygenase activity , 2015 .

[19]  Tawanda Mugadza,et al.  Recent advances in metal–organic frameworks based on pyridylbenzoate ligands: properties and applications , 2015 .

[20]  Xinyong Li,et al.  Facile synthesis and characterizations of copper-zinc-10,15,20-tetra(4-pyridyl) porphyrin (Cu-ZnTPyP) coordination polymer with hexagonal micro-lump and micro-prism morphologies. , 2014, Journal of colloid and interface science.

[21]  Wen-Yang Gao,et al.  Metal-metalloporphyrin frameworks: a resurging class of functional materials. , 2014, Chemical Society reviews.

[22]  J. Capelo,et al.  A new 3,5-bisporphyrinylpyridine derivative as a fluorescent ratiometric probe for zinc ions. , 2014, Chemistry.

[23]  Katsuhiko Ariga,et al.  Porphyrin-based sensor nanoarchitectonics in diverse physical detection modes. , 2014, Physical chemistry chemical physics : PCCP.

[24]  J. Tomé,et al.  Porphyrins and Phthalocyanines Decorated with Dendrimers: Synthesis and Biomedical Applications , 2014 .

[25]  J. Long,et al.  Introduction to metal-organic frameworks. , 2012, Chemical reviews.

[26]  N. C. Gomes,et al.  Photodynamic inactivation of Penicillium chrysogenum conidia by cationic porphyrins , 2011, Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology.

[27]  J. Tomé,et al.  Silica nanoparticles functionalized with porphyrins and analogs for biomedical studies , 2011 .

[28]  Abraham M. Shultz,et al.  Active-site-accessible, porphyrinic metal-organic framework materials. , 2011, Journal of the American Chemical Society.

[29]  K. Fukumori,et al.  New porphyrin-based metal-organic framework with high porosity: 2-D infinite 22.2-A square-grid coordination network. , 2006, Inorganic chemistry.

[30]  Emmanuel Deiters,et al.  Reversible single-crystal-to-single-crystal guest exchange in a 3-D coordination network based on a zinc porphyrin. , 2005, Chemical communications.

[31]  Scott R. Wilson,et al.  Microporous porphyrin solids. , 2005, Accounts of chemical research.

[32]  T. Emge,et al.  1-D infinite array of metalloporphyrin cages. , 2004, Inorganic chemistry.

[33]  C. Sibata,et al.  Photosensitizers in clinical PDT. , 2004, Photodiagnosis and photodynamic therapy.

[34]  F. Porta,et al.  Open network architectures from the self-assembly of AgNO3 and 5,10,15,20-tetra(4-pyridyl)porphyrin (H2tpyp) building blocks: the exceptional self-penetrating topology of the 3D network of [Ag8(ZnIItpyp)7(H2O)2](NO3)8. , 2003, Angewandte Chemie.

[35]  J. Zubieta,et al.  Solid-State Coordination Chemistry: The Self-Assembly of Microporous Organic-Inorganic Hybrid Frameworks Constructed from Tetrapyridylporphyrin and Bimetallic Oxide Chains or Oxide Clusters. , 1999, Angewandte Chemie.

[36]  I. Goldberg,et al.  Supramolecular Assembly of Heterogeneous Multiporphyrin Arrays-Structures of [{ZnII (tpp)}2 (tpyp)] and the Coordination Polymer [{[MnIII (tpp)]2 (tpyp)(ClO4 )2 }∞ ]. , 1998, Angewandte Chemie.

[37]  H. Inoue,et al.  ESR studies on distortion in the macrocyclic ring of copper(II) chlorophylls , 1994 .

[38]  B. Abrahams,et al.  A new type of infinite 3D polymeric network containing 4-connected, peripherally-linked metalloporphyrin building blocks , 1991 .

[39]  Y. Kaizu,et al.  The lowest excited states of copper porphyrins , 1988 .

[40]  J. Waite,et al.  Specific colorimetric detection of o-diphenols and 3,4-dihydroxyphenylalanine-containing peptides. , 1981, Analytical biochemistry.