The Concentration of Synaptically Released Glutamate Outside of the Climbing Fiber–Purkinje Cell Synaptic Cleft

AMPA receptors and glutamate transporters expressed by cerebellar Bergmann glial cells are activated by neurotransmitter released from climbing fibers (Bergles et al., 1997). Based on anatomical evidence, this is most likely the result of glutamate diffusing out of the climbing fiber–Purkinje cell synaptic clefts (Palay and Chan-Palay, 1974). We used the change in the EC50 of the Bergmann glia AMPA receptors produced by cyclothiazide (CTZ) to estimate the concentration of glutamate reached at the glial membrane. The decrease of the EC50 gives rise to a concentration-dependent potentiation of the AMPA receptor-mediated responses (Patneau et al., 1993). By comparing the increase in amplitude of the AMPA receptor response in the Bergmann glia (840 ± 240%; n= 8) with the shift in the glutamate dose–response curve measured in excised patches (EC50, 1810 μm in control vs 304 μm in CTZ), we estimate that the extrasynaptic transmitter concentration reaches 160–190 μm. This contrasts with the concentration in the synaptic cleft, thought to rapidly rise above 1 mm, but is still high enough to activate glutamate receptors. These results indicate that the sphere of influence of synaptically released glutamate can extend beyond the synaptic cleft.

[1]  Paul Antoine Salin,et al.  Use-dependent increases in glutamate concentration activate presynaptic metabotropic glutamate receptors , 1997, Nature.

[2]  S. Mennerick,et al.  Presynaptic influence on the time course of fast excitatory synaptic currents in cultured hippocampal cells , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[3]  R. Silver,et al.  Locus of frequency‐dependent depression identified with multiple‐probability fluctuation analysis at rat climbing fibre‐Purkinje cell synapses , 1998, The Journal of physiology.

[4]  B. Clark,et al.  Currents evoked in Bergmann glial cells by parallel fibre stimulation in rat cerebellar slices , 1997, The Journal of physiology.

[5]  E. Newman High potassium conductance in astrocyte endfeet. , 1986, Science.

[6]  Gang Tong,et al.  Block of glutamate transporters potentiates postsynaptic excitation , 1994, Neuron.

[7]  G. Westbrook,et al.  The time course of glutamate in the synaptic cleft. , 1992, Science.

[8]  M. Kavanaugh,et al.  Flux coupling in a neuronal glutamate transporter , 1996, Nature.

[9]  G. Collingridge,et al.  A hippocampal GluR5 kainate receptor regulating inhibitory synaptic transmission , 1997, Nature.

[10]  D. Attwell,et al.  The release and uptake of excitatory amino acids. , 1990, Trends in pharmacological sciences.

[11]  C. Jahr,et al.  Glutamate transporter currents in bergmann glial cells follow the time course of extrasynaptic glutamate. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[12]  S. Palay,et al.  The Neuroglial Cells of the Cerebellar Cortex , 1974 .

[13]  W. Regehr,et al.  Determinants of the Time Course of Facilitation at the Granule Cell to Purkinje Cell Synapse , 1996, The Journal of Neuroscience.

[14]  M. Kavanaugh,et al.  Kinetics of a human glutamate transporter , 1995, Neuron.

[15]  J. Clements Transmitter timecourse in the synaptic cleft: its role in central synaptic function , 1996, Trends in Neurosciences.

[16]  C. Jahr,et al.  Glial Contribution to Glutamate Uptake at Schaffer Collateral–Commissural Synapses in the Hippocampus , 1998, The Journal of Neuroscience.

[17]  I. Forsythe,et al.  Pre‐ and postsynaptic glutamate receptors at a giant excitatory synapse in rat auditory brainstem slices. , 1995, The Journal of physiology.

[18]  Kahori Yamada,et al.  Benzothiadiazides inhibit rapid glutamate receptor desensitization and enhance glutamatergic synaptic currents , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[19]  C. Jahr,et al.  Transporters Buffer Synaptically Released Glutamate on a Submillisecond Time Scale , 1997, The Journal of Neuroscience.

[20]  I. Raman,et al.  Ampa receptors and rapid synaptic transmission , 1994 .

[21]  M. Mayer,et al.  Cyclothiazide differentially modulates desensitization of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor splice variants. , 1994, Molecular pharmacology.

[22]  M. Häusser,et al.  Estimating the Time Course of the Excitatory Synaptic Conductance in Neocortical Pyramidal Cells Using a Novel Voltage Jump Method , 1997, The Journal of Neuroscience.

[23]  M. Mayer,et al.  AMPA Receptor Flip/Flop Mutants Affecting Deactivation, Desensitization, and Modulation by Cyclothiazide, Aniracetam, and Thiocyanate , 1996, The Journal of Neuroscience.

[24]  Christian Rosenmund,et al.  A Point Mutation in the Glutamate Binding Site Blocks Desensitization of AMPA Receptors , 1998, Neuron.

[25]  I. Forsythe,et al.  Synaptic transmission: Well-placed modulators , 1997, Current Biology.

[26]  Robert A. Pearce,et al.  Physiological evidence for two distinct GABAA responses in rat hippocampus , 1993, Neuron.

[27]  W G Regehr,et al.  Calcium Dependence and Recovery Kinetics of Presynaptic Depression at the Climbing Fiber to Purkinje Cell Synapse , 1998, The Journal of Neuroscience.

[28]  D. Kullmann,et al.  Extrasynaptic Glutamate Spillover in the Hippocampus: Dependence on Temperature and the Role of Active Glutamate Uptake , 1997, Neuron.

[29]  C. Jahr,et al.  Synaptic Activation of Glutamate Transporters in Hippocampal Astrocytes , 1997, Neuron.

[30]  Jeffrey S. Diamond,et al.  Asynchronous release of synaptic vesicles determines the time course of the AMPA receptor-mediated EPSC , 1995, Neuron.

[31]  D. Kullmann,et al.  Extrasynaptic Glutamate Diffusion in the Hippocampus: Ultrastructural Constraints, Uptake, and Receptor Activation , 1998, The Journal of Neuroscience.

[32]  L. Trussell,et al.  Desensitization of AMPA receptors upon multiquantal neurotransmitter release , 1993, Neuron.

[33]  L. Vyklický,et al.  Hippocampal neurons exhibit cyclothiazide-sensitive rapidly desensitizing responses to kainate , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[34]  B. Walmsley,et al.  Amplitude and time course of spontaneous and evoked excitatory postsynaptic currents in bushy cells of the anteroventral cochlear nucleus. , 1996, Journal of neurophysiology.

[35]  Yoshikatsu Kanai,et al.  The elusive transporters with a high affinity for glutamate , 1993, Trends in Neurosciences.

[36]  A. Levey,et al.  Localization of neuronal and glial glutamate transporters , 1994, Neuron.

[37]  Michael L. Hines,et al.  NEURON — A Program for Simulation of Nerve Equations , 1993 .

[38]  CE Jahr,et al.  NMDA channel behavior depends on agonist affinity , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[39]  P. Somogyi,et al.  Synaptic and nonsynaptic localization of the GluR1 subunit of the AMPA- type excitatory amino acid receptor in the rat cerebellum , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[40]  D. Kullmann,et al.  Extrasynaptic glutamate spillover in the hippocampus: evidence and implications , 1998, Trends in Neurosciences.