Incremental tensor analysis: Theory and applications

How do we find patterns in author-keyword associations, evolving over time? Or in data cubes (tensors), with product-branchcustomer sales information? And more generally, how to summarize high-order data cubes (tensors)? How to incrementally update these patterns over time? Matrix decompositions, like principal component analysis (PCA) and variants, are invaluable tools for mining, dimensionality reduction, feature selection, rule identification in numerous settings like streaming data, text, graphs, social networks, and many more settings. However, they have only two orders (i.e., matrices, like author and keyword in the previous example). We propose to envision such higher-order data as tensors, and tap the vast literature on the topic. However, these methods do not necessarily scale up, let alone operate on semi-infinite streams. Thus, we introduce a general framework, incremental tensor analysis (ITA), which efficiently computes a compact summary for high-order and high-dimensional data, and also reveals the hidden correlations. Three variants of ITA are presented: (1) dynamic tensor analysis (DTA); (2) streaming tensor analysis (STA); and (3) window-based tensor analysis (WTA). In paricular, we explore several fundamental design trade-offs such as space efficiency, computational cost, approximation accuracy, time dependency, and model complexity. We implement all our methods and apply them in several real settings, such as network anomaly detection, multiway latent semantic indexing on citation networks, and correlation study on sensor measurements. Our empirical studies show that the proposed methods are fast and accurate and that they find interesting patterns and outliers on the real datasets.

[1]  Mohammed J. Zaki,et al.  TRICLUSTER: an effective algorithm for mining coherent clusters in 3D microarray data , 2005, SIGMOD '05.

[2]  C. Loan The ubiquitous Kronecker product , 2000 .

[3]  Petros Drineas,et al.  Tensor-CUR Decompositions for Tensor-Based Data , 2008, SIAM J. Matrix Anal. Appl..

[4]  Tamara G. Kolda,et al.  Tensor Decompositions and Applications , 2009, SIAM Rev..

[5]  Heng Tao Shen,et al.  Principal Component Analysis , 2009, Encyclopedia of Biometrics.

[6]  Jiawei Han,et al.  ACM Transactions on Knowledge Discovery from Data: Introduction , 2007 .

[7]  Christos Faloutsos,et al.  Online data mining for co-evolving time sequences , 2000, Proceedings of 16th International Conference on Data Engineering (Cat. No.00CB37073).

[8]  Tomasz Imielinski,et al.  Mining association rules between sets of items in large databases , 1993, SIGMOD Conference.

[9]  Amnon Shashua,et al.  Linear image coding for regression and classification using the tensor-rank principle , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[10]  Dennis Shasha,et al.  StatStream: Statistical Monitoring of Thousands of Data Streams in Real Time , 2002, VLDB.

[11]  B. Everitt,et al.  Three-Mode Principal Component Analysis. , 1986 .

[12]  Christos Faloutsos,et al.  Adaptive, Hands-Off Stream Mining , 2003, VLDB.

[13]  Chris H. Q. Ding,et al.  2-Dimensional Singular Value Decomposition for 2D Maps and Images , 2005, SDM.

[14]  J. Leeuw,et al.  Principal component analysis of three-mode data by means of alternating least squares algorithms , 1980 .

[15]  Rasmus Bro,et al.  Multi-way Analysis with Applications in the Chemical Sciences , 2004 .

[16]  I. Jolliffe Principal Component Analysis , 2002 .

[17]  Jimeng Sun,et al.  Beyond streams and graphs: dynamic tensor analysis , 2006, KDD '06.

[18]  C. Ding,et al.  Two-Dimensional Singular Value Decomposition ( 2 DSVD ) for 2 D Maps and Images , 2005 .

[19]  Susan T. Dumais,et al.  Personalized information delivery: an analysis of information filtering methods , 1992, CACM.

[20]  Philip S. Yu,et al.  A Framework for Clustering Evolving Data Streams , 2003, VLDB.

[21]  Tamara G. Kolda,et al.  Higher-order Web link analysis using multilinear algebra , 2005, Fifth IEEE International Conference on Data Mining (ICDM'05).

[22]  Xuelong Li,et al.  General Tensor Discriminant Analysis and Gabor Features for Gait Recognition , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[23]  Philip S. Yu,et al.  Window-based Tensor Analysis on High-dimensional and Multi-aspect Streams , 2006, Sixth International Conference on Data Mining (ICDM'06).

[24]  Philip S. Yu,et al.  Mining concept-drifting data streams using ensemble classifiers , 2003, KDD '03.

[25]  Geoff Hulten,et al.  Mining high-speed data streams , 2000, KDD '00.

[26]  Harry Shum,et al.  Concurrent subspaces analysis , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[27]  Santosh S. Vempala,et al.  Latent semantic indexing: a probabilistic analysis , 1998, PODS '98.

[28]  Christos Faloutsos,et al.  Quantifiable data mining using ratio rules , 2000, The VLDB Journal.

[29]  Sergey Brin,et al.  The Anatomy of a Large-Scale Hypertextual Web Search Engine , 1998, Comput. Networks.

[30]  Simon Haykin,et al.  Adaptive filter theory (2nd ed.) , 1991 .

[31]  Somchai Jitapunkul,et al.  TWO-Dimensional Linear Discriminant Analysis of Principle Component Vectors for Face Recognition , 2006, 2006 IEEE International Conference on Acoustics Speech and Signal Processing Proceedings.

[32]  Joos Vandewalle,et al.  On the Best Rank-1 and Rank-(R1 , R2, ... , RN) Approximation of Higher-Order Tensors , 2000, SIAM J. Matrix Anal. Appl..

[33]  T. Kolda Multilinear operators for higher-order decompositions , 2006 .

[34]  David E. Booth,et al.  Multi-Way Analysis: Applications in the Chemical Sciences , 2005, Technometrics.

[35]  Jieping Ye,et al.  Generalized Low Rank Approximations of Matrices , 2004, Machine Learning.

[36]  Deng Cai,et al.  Tensor Subspace Analysis , 2005, NIPS.

[37]  Santosh S. Vempala,et al.  On clusterings-good, bad and spectral , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[38]  Demetri Terzopoulos,et al.  Multilinear Analysis of Image Ensembles: TensorFaces , 2002, ECCV.

[39]  L. Tucker,et al.  Some mathematical notes on three-mode factor analysis , 1966, Psychometrika.

[40]  Sudipto Guha,et al.  Clustering Data Streams: Theory and Practice , 2003, IEEE Trans. Knowl. Data Eng..

[41]  Piotr Indyk,et al.  Identifying Representative Trends in Massive Time Series Data Sets Using Sketches , 2000, VLDB.

[42]  Jimeng Sun,et al.  Streaming Pattern Discovery in Multiple Time-Series , 2005, VLDB.

[43]  S. Haykin,et al.  Adaptive Filter Theory , 1986 .

[44]  Vipin Kumar,et al.  Parallel Multilevel series k-Way Partitioning Scheme for Irregular Graphs , 1999, SIAM Rev..

[45]  Matthew Richardson,et al.  Mining the network value of customers , 2001, KDD '01.

[46]  Dimitrios Gunopulos,et al.  Correlating synchronous and asynchronous data streams , 2003, KDD '03.

[47]  Johannes Gehrke,et al.  Mining data streams under block evolution , 2002, SKDD.

[48]  Pieter M. Kroonenberg,et al.  Three-mode principal component analysis : theory and applications , 1983 .

[49]  Christos Faloutsos,et al.  BRAID: stream mining through group lag correlations , 2005, SIGMOD '05.